https://github.com/sueda/eol-cloth
Revision 2323d9f6471bbf5dc63979216a3ed3c97ff3538a authored by Weidner on 13 July 2018, 15:37:58 UTC, committed by Weidner on 13 July 2018, 15:37:58 UTC
1 parent db932cf
Tip revision: 2323d9f6471bbf5dc63979216a3ed3c97ff3538a authored by Weidner on 13 July 2018, 15:37:58 UTC
Solver solving using old deform grad method. Still some bugs, but going to clean up force filling
Solver solving using old deform grad method. Still some bugs, but going to clean up force filling
Tip revision: 2323d9f
raytri.cpp
/* Ray-Triangle Intersection Test Routines */
/* Different optimizations of my and Ben Trumbore's */
/* code from journals of graphics tools (JGT) */
/* http://www.acm.org/jgt/ */
/* by Tomas Moller, May 2000 */
#include <math.h>
#define EPSILON 1e-6
#define CROSS(dest,v1,v2) \
dest[0]=v1[1]*v2[2]-v1[2]*v2[1]; \
dest[1]=v1[2]*v2[0]-v1[0]*v2[2]; \
dest[2]=v1[0]*v2[1]-v1[1]*v2[0];
#define DOT(v1,v2) (v1[0]*v2[0]+v1[1]*v2[1]+v1[2]*v2[2])
#define SUB(dest,v1,v2) \
dest[0]=v1[0]-v2[0]; \
dest[1]=v1[1]-v2[1]; \
dest[2]=v1[2]-v2[2];
/* the original jgt code */
int intersect_triangle(double orig[3], double dir[3],
double vert0[3], double vert1[3], double vert2[3],
double *t, double *u, double *v)
{
double edge1[3], edge2[3], tvec[3], pvec[3], qvec[3];
double det,inv_det;
/* find vectors for two edges sharing vert0 */
SUB(edge1, vert1, vert0);
SUB(edge2, vert2, vert0);
/* begin calculating determinant - also used to calculate U parameter */
CROSS(pvec, dir, edge2);
/* if determinant is near zero, ray lies in plane of triangle */
det = DOT(edge1, pvec);
if (det > -EPSILON && det < EPSILON)
return 0;
inv_det = 1.0 / det;
/* calculate distance from vert0 to ray origin */
SUB(tvec, orig, vert0);
/* calculate U parameter and test bounds */
*u = DOT(tvec, pvec) * inv_det;
if (*u < 0.0 || *u > 1.0)
return 0;
/* prepare to test V parameter */
CROSS(qvec, tvec, edge1);
/* calculate V parameter and test bounds */
*v = DOT(dir, qvec) * inv_det;
if (*v < 0.0 || *u + *v > 1.0)
return 0;
/* calculate t, ray intersects triangle */
*t = DOT(edge2, qvec) * inv_det;
return 1;
}
/* code rewritten to do tests on the sign of the determinant */
/* the division is at the end in the code */
int intersect_triangle1(double orig[3], double dir[3],
double vert0[3], double vert1[3], double vert2[3],
double *t, double *u, double *v)
{
double edge1[3], edge2[3], tvec[3], pvec[3], qvec[3];
double det,inv_det;
/* find vectors for two edges sharing vert0 */
SUB(edge1, vert1, vert0);
SUB(edge2, vert2, vert0);
/* begin calculating determinant - also used to calculate U parameter */
CROSS(pvec, dir, edge2);
/* if determinant is near zero, ray lies in plane of triangle */
det = DOT(edge1, pvec);
if (det > EPSILON)
{
/* calculate distance from vert0 to ray origin */
SUB(tvec, orig, vert0);
/* calculate U parameter and test bounds */
*u = DOT(tvec, pvec);
if (*u < 0.0 || *u > det)
return 0;
/* prepare to test V parameter */
CROSS(qvec, tvec, edge1);
/* calculate V parameter and test bounds */
*v = DOT(dir, qvec);
if (*v < 0.0 || *u + *v > det)
return 0;
}
else if(det < -EPSILON)
{
/* calculate distance from vert0 to ray origin */
SUB(tvec, orig, vert0);
/* calculate U parameter and test bounds */
*u = DOT(tvec, pvec);
/* printf("*u=%f\n",(float)*u); */
/* printf("det=%f\n",det); */
if (*u > 0.0 || *u < det)
return 0;
/* prepare to test V parameter */
CROSS(qvec, tvec, edge1);
/* calculate V parameter and test bounds */
*v = DOT(dir, qvec) ;
if (*v > 0.0 || *u + *v < det)
return 0;
}
else return 0; /* ray is parallell to the plane of the triangle */
inv_det = 1.0 / det;
/* calculate t, ray intersects triangle */
*t = DOT(edge2, qvec) * inv_det;
(*u) *= inv_det;
(*v) *= inv_det;
return 1;
}
/* code rewritten to do tests on the sign of the determinant */
/* the division is before the test of the sign of the det */
int intersect_triangle2(double orig[3], double dir[3],
double vert0[3], double vert1[3], double vert2[3],
double *t, double *u, double *v)
{
double edge1[3], edge2[3], tvec[3], pvec[3], qvec[3];
double det,inv_det;
/* find vectors for two edges sharing vert0 */
SUB(edge1, vert1, vert0);
SUB(edge2, vert2, vert0);
/* begin calculating determinant - also used to calculate U parameter */
CROSS(pvec, dir, edge2);
/* if determinant is near zero, ray lies in plane of triangle */
det = DOT(edge1, pvec);
/* calculate distance from vert0 to ray origin */
SUB(tvec, orig, vert0);
inv_det = 1.0 / det;
if (det > EPSILON)
{
/* calculate U parameter and test bounds */
*u = DOT(tvec, pvec);
if (*u < 0.0 || *u > det)
return 0;
/* prepare to test V parameter */
CROSS(qvec, tvec, edge1);
/* calculate V parameter and test bounds */
*v = DOT(dir, qvec);
if (*v < 0.0 || *u + *v > det)
return 0;
}
else if(det < -EPSILON)
{
/* calculate U parameter and test bounds */
*u = DOT(tvec, pvec);
if (*u > 0.0 || *u < det)
return 0;
/* prepare to test V parameter */
CROSS(qvec, tvec, edge1);
/* calculate V parameter and test bounds */
*v = DOT(dir, qvec) ;
if (*v > 0.0 || *u + *v < det)
return 0;
}
else return 0; /* ray is parallell to the plane of the triangle */
/* calculate t, ray intersects triangle */
*t = DOT(edge2, qvec) * inv_det;
(*u) *= inv_det;
(*v) *= inv_det;
return 1;
}
/* code rewritten to do tests on the sign of the determinant */
/* the division is before the test of the sign of the det */
/* and one CROSS has been moved out from the if-else if-else */
int intersect_triangle3(double orig[3], double dir[3],
double vert0[3], double vert1[3], double vert2[3],
double *t, double *u, double *v)
{
double edge1[3], edge2[3], tvec[3], pvec[3], qvec[3];
double det,inv_det;
/* find vectors for two edges sharing vert0 */
SUB(edge1, vert1, vert0);
SUB(edge2, vert2, vert0);
/* begin calculating determinant - also used to calculate U parameter */
CROSS(pvec, dir, edge2);
/* if determinant is near zero, ray lies in plane of triangle */
det = DOT(edge1, pvec);
/* calculate distance from vert0 to ray origin */
SUB(tvec, orig, vert0);
inv_det = 1.0 / det;
CROSS(qvec, tvec, edge1);
if (det > EPSILON)
{
*u = DOT(tvec, pvec);
if (*u < 0.0 || *u > det)
return 0;
/* calculate V parameter and test bounds */
*v = DOT(dir, qvec);
if (*v < 0.0 || *u + *v > det)
return 0;
}
else if(det < -EPSILON)
{
/* calculate U parameter and test bounds */
*u = DOT(tvec, pvec);
if (*u > 0.0 || *u < det)
return 0;
/* calculate V parameter and test bounds */
*v = DOT(dir, qvec) ;
if (*v > 0.0 || *u + *v < det)
return 0;
}
else return 0; /* ray is parallell to the plane of the triangle */
*t = DOT(edge2, qvec) * inv_det;
(*u) *= inv_det;
(*v) *= inv_det;
return 1;
}
/* Sueda: inclusive borders */
#define ZERO -EPSILON
int intersect_triangle3_inc(
const double *orig, const double *dir,
const double *vert0, const double *vert1, const double *vert2,
double *t, double *u, double *v)
{
double edge1[3], edge2[3], tvec[3], pvec[3], qvec[3];
double det,inv_det;
/* find vectors for two edges sharing vert0 */
SUB(edge1, vert1, vert0);
SUB(edge2, vert2, vert0);
/* begin calculating determinant - also used to calculate U parameter */
CROSS(pvec, dir, edge2);
/* if determinant is near zero, ray lies in plane of triangle */
det = DOT(edge1, pvec);
/* calculate distance from vert0 to ray origin */
SUB(tvec, orig, vert0);
inv_det = 1.0 / det;
CROSS(qvec, tvec, edge1);
if (det > EPSILON)
{
*u = DOT(tvec, pvec);
if (*u < -ZERO || *u > det + ZERO)
return 0;
/* calculate V parameter and test bounds */
*v = DOT(dir, qvec);
if (*v < -ZERO || *u + *v > det + ZERO)
return 0;
}
else if(det < -EPSILON)
{
/* calculate U parameter and test bounds */
*u = DOT(tvec, pvec);
if (*u > ZERO || *u < det - ZERO)
return 0;
/* calculate V parameter and test bounds */
*v = DOT(dir, qvec) ;
if (*v > ZERO || *u + *v < det - ZERO)
return 0;
}
else return 0; /* ray is parallell to the plane of the triangle */
*t = DOT(edge2, qvec) * inv_det;
(*u) *= inv_det;
(*v) *= inv_det;
return 1;
}
Computing file changes ...