https://github.com/torvalds/linux
Revision 249be8511b269495bc95cb8bdfdd5840b2ba73c0 authored by Linus Torvalds on 19 July 2019, 16:45:58 UTC, committed by Linus Torvalds on 19 July 2019, 16:45:58 UTC
Merge yet more updates from Andrew Morton:
 "The rest of MM and a kernel-wide procfs cleanup.

  Summary of the more significant patches:

   - Patch series "mm/memory_hotplug: Factor out memory block
     devicehandling", v3. David Hildenbrand.

     Some spring-cleaning of the memory hotplug code, notably in
     drivers/base/memory.c

   - "mm: thp: fix false negative of shmem vma's THP eligibility". Yang
     Shi.

     Fix /proc/pid/smaps output for THP pages used in shmem.

   - "resource: fix locking in find_next_iomem_res()" + 1. Nadav Amit.

     Bugfix and speedup for kernel/resource.c

   - Patch series "mm: Further memory block device cleanups", David
     Hildenbrand.

     More spring-cleaning of the memory hotplug code.

   - Patch series "mm: Sub-section memory hotplug support". Dan
     Williams.

     Generalise the memory hotplug code so that pmem can use it more
     completely. Then remove the hacks from the libnvdimm code which
     were there to work around the memory-hotplug code's constraints.

   - "proc/sysctl: add shared variables for range check", Matteo Croce.

     We have about 250 instances of

          int zero;
          ...
                  .extra1 = &zero,

     in the tree. This is a tree-wide sweep to make all those private
     "zero"s and "one"s use global variables.

     Alas, it isn't practical to make those two global integers const"

* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (38 commits)
  proc/sysctl: add shared variables for range check
  mm: migrate: remove unused mode argument
  mm/sparsemem: cleanup 'section number' data types
  libnvdimm/pfn: stop padding pmem namespaces to section alignment
  libnvdimm/pfn: fix fsdax-mode namespace info-block zero-fields
  mm/devm_memremap_pages: enable sub-section remap
  mm: document ZONE_DEVICE memory-model implications
  mm/sparsemem: support sub-section hotplug
  mm/sparsemem: prepare for sub-section ranges
  mm: kill is_dev_zone() helper
  mm/hotplug: kill is_dev_zone() usage in __remove_pages()
  mm/sparsemem: convert kmalloc_section_memmap() to populate_section_memmap()
  mm/hotplug: prepare shrink_{zone, pgdat}_span for sub-section removal
  mm/sparsemem: add helpers track active portions of a section at boot
  mm/sparsemem: introduce a SECTION_IS_EARLY flag
  mm/sparsemem: introduce struct mem_section_usage
  drivers/base/memory.c: get rid of find_memory_block_hinted()
  mm/memory_hotplug: move and simplify walk_memory_blocks()
  mm/memory_hotplug: rename walk_memory_range() and pass start+size instead of pfns
  mm: make register_mem_sect_under_node() static
  ...
2 parent s 3bfe1fc + eec4844
Raw File
Tip revision: 249be8511b269495bc95cb8bdfdd5840b2ba73c0 authored by Linus Torvalds on 19 July 2019, 16:45:58 UTC
Merge branch 'akpm' (patches from Andrew)
Tip revision: 249be85
pcrypt.c
// SPDX-License-Identifier: GPL-2.0-only
/*
 * pcrypt - Parallel crypto wrapper.
 *
 * Copyright (C) 2009 secunet Security Networks AG
 * Copyright (C) 2009 Steffen Klassert <steffen.klassert@secunet.com>
 */

#include <crypto/algapi.h>
#include <crypto/internal/aead.h>
#include <linux/atomic.h>
#include <linux/err.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/notifier.h>
#include <linux/kobject.h>
#include <linux/cpu.h>
#include <crypto/pcrypt.h>

struct padata_pcrypt {
	struct padata_instance *pinst;
	struct workqueue_struct *wq;

	/*
	 * Cpumask for callback CPUs. It should be
	 * equal to serial cpumask of corresponding padata instance,
	 * so it is updated when padata notifies us about serial
	 * cpumask change.
	 *
	 * cb_cpumask is protected by RCU. This fact prevents us from
	 * using cpumask_var_t directly because the actual type of
	 * cpumsak_var_t depends on kernel configuration(particularly on
	 * CONFIG_CPUMASK_OFFSTACK macro). Depending on the configuration
	 * cpumask_var_t may be either a pointer to the struct cpumask
	 * or a variable allocated on the stack. Thus we can not safely use
	 * cpumask_var_t with RCU operations such as rcu_assign_pointer or
	 * rcu_dereference. So cpumask_var_t is wrapped with struct
	 * pcrypt_cpumask which makes possible to use it with RCU.
	 */
	struct pcrypt_cpumask {
		cpumask_var_t mask;
	} *cb_cpumask;
	struct notifier_block nblock;
};

static struct padata_pcrypt pencrypt;
static struct padata_pcrypt pdecrypt;
static struct kset           *pcrypt_kset;

struct pcrypt_instance_ctx {
	struct crypto_aead_spawn spawn;
	atomic_t tfm_count;
};

struct pcrypt_aead_ctx {
	struct crypto_aead *child;
	unsigned int cb_cpu;
};

static int pcrypt_do_parallel(struct padata_priv *padata, unsigned int *cb_cpu,
			      struct padata_pcrypt *pcrypt)
{
	unsigned int cpu_index, cpu, i;
	struct pcrypt_cpumask *cpumask;

	cpu = *cb_cpu;

	rcu_read_lock_bh();
	cpumask = rcu_dereference_bh(pcrypt->cb_cpumask);
	if (cpumask_test_cpu(cpu, cpumask->mask))
			goto out;

	if (!cpumask_weight(cpumask->mask))
			goto out;

	cpu_index = cpu % cpumask_weight(cpumask->mask);

	cpu = cpumask_first(cpumask->mask);
	for (i = 0; i < cpu_index; i++)
		cpu = cpumask_next(cpu, cpumask->mask);

	*cb_cpu = cpu;

out:
	rcu_read_unlock_bh();
	return padata_do_parallel(pcrypt->pinst, padata, cpu);
}

static int pcrypt_aead_setkey(struct crypto_aead *parent,
			      const u8 *key, unsigned int keylen)
{
	struct pcrypt_aead_ctx *ctx = crypto_aead_ctx(parent);

	return crypto_aead_setkey(ctx->child, key, keylen);
}

static int pcrypt_aead_setauthsize(struct crypto_aead *parent,
				   unsigned int authsize)
{
	struct pcrypt_aead_ctx *ctx = crypto_aead_ctx(parent);

	return crypto_aead_setauthsize(ctx->child, authsize);
}

static void pcrypt_aead_serial(struct padata_priv *padata)
{
	struct pcrypt_request *preq = pcrypt_padata_request(padata);
	struct aead_request *req = pcrypt_request_ctx(preq);

	aead_request_complete(req->base.data, padata->info);
}

static void pcrypt_aead_done(struct crypto_async_request *areq, int err)
{
	struct aead_request *req = areq->data;
	struct pcrypt_request *preq = aead_request_ctx(req);
	struct padata_priv *padata = pcrypt_request_padata(preq);

	padata->info = err;
	req->base.flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP;

	padata_do_serial(padata);
}

static void pcrypt_aead_enc(struct padata_priv *padata)
{
	struct pcrypt_request *preq = pcrypt_padata_request(padata);
	struct aead_request *req = pcrypt_request_ctx(preq);

	padata->info = crypto_aead_encrypt(req);

	if (padata->info == -EINPROGRESS)
		return;

	padata_do_serial(padata);
}

static int pcrypt_aead_encrypt(struct aead_request *req)
{
	int err;
	struct pcrypt_request *preq = aead_request_ctx(req);
	struct aead_request *creq = pcrypt_request_ctx(preq);
	struct padata_priv *padata = pcrypt_request_padata(preq);
	struct crypto_aead *aead = crypto_aead_reqtfm(req);
	struct pcrypt_aead_ctx *ctx = crypto_aead_ctx(aead);
	u32 flags = aead_request_flags(req);

	memset(padata, 0, sizeof(struct padata_priv));

	padata->parallel = pcrypt_aead_enc;
	padata->serial = pcrypt_aead_serial;

	aead_request_set_tfm(creq, ctx->child);
	aead_request_set_callback(creq, flags & ~CRYPTO_TFM_REQ_MAY_SLEEP,
				  pcrypt_aead_done, req);
	aead_request_set_crypt(creq, req->src, req->dst,
			       req->cryptlen, req->iv);
	aead_request_set_ad(creq, req->assoclen);

	err = pcrypt_do_parallel(padata, &ctx->cb_cpu, &pencrypt);
	if (!err)
		return -EINPROGRESS;

	return err;
}

static void pcrypt_aead_dec(struct padata_priv *padata)
{
	struct pcrypt_request *preq = pcrypt_padata_request(padata);
	struct aead_request *req = pcrypt_request_ctx(preq);

	padata->info = crypto_aead_decrypt(req);

	if (padata->info == -EINPROGRESS)
		return;

	padata_do_serial(padata);
}

static int pcrypt_aead_decrypt(struct aead_request *req)
{
	int err;
	struct pcrypt_request *preq = aead_request_ctx(req);
	struct aead_request *creq = pcrypt_request_ctx(preq);
	struct padata_priv *padata = pcrypt_request_padata(preq);
	struct crypto_aead *aead = crypto_aead_reqtfm(req);
	struct pcrypt_aead_ctx *ctx = crypto_aead_ctx(aead);
	u32 flags = aead_request_flags(req);

	memset(padata, 0, sizeof(struct padata_priv));

	padata->parallel = pcrypt_aead_dec;
	padata->serial = pcrypt_aead_serial;

	aead_request_set_tfm(creq, ctx->child);
	aead_request_set_callback(creq, flags & ~CRYPTO_TFM_REQ_MAY_SLEEP,
				  pcrypt_aead_done, req);
	aead_request_set_crypt(creq, req->src, req->dst,
			       req->cryptlen, req->iv);
	aead_request_set_ad(creq, req->assoclen);

	err = pcrypt_do_parallel(padata, &ctx->cb_cpu, &pdecrypt);
	if (!err)
		return -EINPROGRESS;

	return err;
}

static int pcrypt_aead_init_tfm(struct crypto_aead *tfm)
{
	int cpu, cpu_index;
	struct aead_instance *inst = aead_alg_instance(tfm);
	struct pcrypt_instance_ctx *ictx = aead_instance_ctx(inst);
	struct pcrypt_aead_ctx *ctx = crypto_aead_ctx(tfm);
	struct crypto_aead *cipher;

	cpu_index = (unsigned int)atomic_inc_return(&ictx->tfm_count) %
		    cpumask_weight(cpu_online_mask);

	ctx->cb_cpu = cpumask_first(cpu_online_mask);
	for (cpu = 0; cpu < cpu_index; cpu++)
		ctx->cb_cpu = cpumask_next(ctx->cb_cpu, cpu_online_mask);

	cipher = crypto_spawn_aead(&ictx->spawn);

	if (IS_ERR(cipher))
		return PTR_ERR(cipher);

	ctx->child = cipher;
	crypto_aead_set_reqsize(tfm, sizeof(struct pcrypt_request) +
				     sizeof(struct aead_request) +
				     crypto_aead_reqsize(cipher));

	return 0;
}

static void pcrypt_aead_exit_tfm(struct crypto_aead *tfm)
{
	struct pcrypt_aead_ctx *ctx = crypto_aead_ctx(tfm);

	crypto_free_aead(ctx->child);
}

static void pcrypt_free(struct aead_instance *inst)
{
	struct pcrypt_instance_ctx *ctx = aead_instance_ctx(inst);

	crypto_drop_aead(&ctx->spawn);
	kfree(inst);
}

static int pcrypt_init_instance(struct crypto_instance *inst,
				struct crypto_alg *alg)
{
	if (snprintf(inst->alg.cra_driver_name, CRYPTO_MAX_ALG_NAME,
		     "pcrypt(%s)", alg->cra_driver_name) >= CRYPTO_MAX_ALG_NAME)
		return -ENAMETOOLONG;

	memcpy(inst->alg.cra_name, alg->cra_name, CRYPTO_MAX_ALG_NAME);

	inst->alg.cra_priority = alg->cra_priority + 100;
	inst->alg.cra_blocksize = alg->cra_blocksize;
	inst->alg.cra_alignmask = alg->cra_alignmask;

	return 0;
}

static int pcrypt_create_aead(struct crypto_template *tmpl, struct rtattr **tb,
			      u32 type, u32 mask)
{
	struct pcrypt_instance_ctx *ctx;
	struct crypto_attr_type *algt;
	struct aead_instance *inst;
	struct aead_alg *alg;
	const char *name;
	int err;

	algt = crypto_get_attr_type(tb);
	if (IS_ERR(algt))
		return PTR_ERR(algt);

	name = crypto_attr_alg_name(tb[1]);
	if (IS_ERR(name))
		return PTR_ERR(name);

	inst = kzalloc(sizeof(*inst) + sizeof(*ctx), GFP_KERNEL);
	if (!inst)
		return -ENOMEM;

	ctx = aead_instance_ctx(inst);
	crypto_set_aead_spawn(&ctx->spawn, aead_crypto_instance(inst));

	err = crypto_grab_aead(&ctx->spawn, name, 0, 0);
	if (err)
		goto out_free_inst;

	alg = crypto_spawn_aead_alg(&ctx->spawn);
	err = pcrypt_init_instance(aead_crypto_instance(inst), &alg->base);
	if (err)
		goto out_drop_aead;

	inst->alg.base.cra_flags = CRYPTO_ALG_ASYNC;

	inst->alg.ivsize = crypto_aead_alg_ivsize(alg);
	inst->alg.maxauthsize = crypto_aead_alg_maxauthsize(alg);

	inst->alg.base.cra_ctxsize = sizeof(struct pcrypt_aead_ctx);

	inst->alg.init = pcrypt_aead_init_tfm;
	inst->alg.exit = pcrypt_aead_exit_tfm;

	inst->alg.setkey = pcrypt_aead_setkey;
	inst->alg.setauthsize = pcrypt_aead_setauthsize;
	inst->alg.encrypt = pcrypt_aead_encrypt;
	inst->alg.decrypt = pcrypt_aead_decrypt;

	inst->free = pcrypt_free;

	err = aead_register_instance(tmpl, inst);
	if (err)
		goto out_drop_aead;

out:
	return err;

out_drop_aead:
	crypto_drop_aead(&ctx->spawn);
out_free_inst:
	kfree(inst);
	goto out;
}

static int pcrypt_create(struct crypto_template *tmpl, struct rtattr **tb)
{
	struct crypto_attr_type *algt;

	algt = crypto_get_attr_type(tb);
	if (IS_ERR(algt))
		return PTR_ERR(algt);

	switch (algt->type & algt->mask & CRYPTO_ALG_TYPE_MASK) {
	case CRYPTO_ALG_TYPE_AEAD:
		return pcrypt_create_aead(tmpl, tb, algt->type, algt->mask);
	}

	return -EINVAL;
}

static int pcrypt_cpumask_change_notify(struct notifier_block *self,
					unsigned long val, void *data)
{
	struct padata_pcrypt *pcrypt;
	struct pcrypt_cpumask *new_mask, *old_mask;
	struct padata_cpumask *cpumask = (struct padata_cpumask *)data;

	if (!(val & PADATA_CPU_SERIAL))
		return 0;

	pcrypt = container_of(self, struct padata_pcrypt, nblock);
	new_mask = kmalloc(sizeof(*new_mask), GFP_KERNEL);
	if (!new_mask)
		return -ENOMEM;
	if (!alloc_cpumask_var(&new_mask->mask, GFP_KERNEL)) {
		kfree(new_mask);
		return -ENOMEM;
	}

	old_mask = pcrypt->cb_cpumask;

	cpumask_copy(new_mask->mask, cpumask->cbcpu);
	rcu_assign_pointer(pcrypt->cb_cpumask, new_mask);
	synchronize_rcu();

	free_cpumask_var(old_mask->mask);
	kfree(old_mask);
	return 0;
}

static int pcrypt_sysfs_add(struct padata_instance *pinst, const char *name)
{
	int ret;

	pinst->kobj.kset = pcrypt_kset;
	ret = kobject_add(&pinst->kobj, NULL, "%s", name);
	if (!ret)
		kobject_uevent(&pinst->kobj, KOBJ_ADD);

	return ret;
}

static int pcrypt_init_padata(struct padata_pcrypt *pcrypt,
			      const char *name)
{
	int ret = -ENOMEM;
	struct pcrypt_cpumask *mask;

	get_online_cpus();

	pcrypt->wq = alloc_workqueue("%s", WQ_MEM_RECLAIM | WQ_CPU_INTENSIVE,
				     1, name);
	if (!pcrypt->wq)
		goto err;

	pcrypt->pinst = padata_alloc_possible(pcrypt->wq);
	if (!pcrypt->pinst)
		goto err_destroy_workqueue;

	mask = kmalloc(sizeof(*mask), GFP_KERNEL);
	if (!mask)
		goto err_free_padata;
	if (!alloc_cpumask_var(&mask->mask, GFP_KERNEL)) {
		kfree(mask);
		goto err_free_padata;
	}

	cpumask_and(mask->mask, cpu_possible_mask, cpu_online_mask);
	rcu_assign_pointer(pcrypt->cb_cpumask, mask);

	pcrypt->nblock.notifier_call = pcrypt_cpumask_change_notify;
	ret = padata_register_cpumask_notifier(pcrypt->pinst, &pcrypt->nblock);
	if (ret)
		goto err_free_cpumask;

	ret = pcrypt_sysfs_add(pcrypt->pinst, name);
	if (ret)
		goto err_unregister_notifier;

	put_online_cpus();

	return ret;

err_unregister_notifier:
	padata_unregister_cpumask_notifier(pcrypt->pinst, &pcrypt->nblock);
err_free_cpumask:
	free_cpumask_var(mask->mask);
	kfree(mask);
err_free_padata:
	padata_free(pcrypt->pinst);
err_destroy_workqueue:
	destroy_workqueue(pcrypt->wq);
err:
	put_online_cpus();

	return ret;
}

static void pcrypt_fini_padata(struct padata_pcrypt *pcrypt)
{
	free_cpumask_var(pcrypt->cb_cpumask->mask);
	kfree(pcrypt->cb_cpumask);

	padata_stop(pcrypt->pinst);
	padata_unregister_cpumask_notifier(pcrypt->pinst, &pcrypt->nblock);
	destroy_workqueue(pcrypt->wq);
	padata_free(pcrypt->pinst);
}

static struct crypto_template pcrypt_tmpl = {
	.name = "pcrypt",
	.create = pcrypt_create,
	.module = THIS_MODULE,
};

static int __init pcrypt_init(void)
{
	int err = -ENOMEM;

	pcrypt_kset = kset_create_and_add("pcrypt", NULL, kernel_kobj);
	if (!pcrypt_kset)
		goto err;

	err = pcrypt_init_padata(&pencrypt, "pencrypt");
	if (err)
		goto err_unreg_kset;

	err = pcrypt_init_padata(&pdecrypt, "pdecrypt");
	if (err)
		goto err_deinit_pencrypt;

	padata_start(pencrypt.pinst);
	padata_start(pdecrypt.pinst);

	return crypto_register_template(&pcrypt_tmpl);

err_deinit_pencrypt:
	pcrypt_fini_padata(&pencrypt);
err_unreg_kset:
	kset_unregister(pcrypt_kset);
err:
	return err;
}

static void __exit pcrypt_exit(void)
{
	pcrypt_fini_padata(&pencrypt);
	pcrypt_fini_padata(&pdecrypt);

	kset_unregister(pcrypt_kset);
	crypto_unregister_template(&pcrypt_tmpl);
}

subsys_initcall(pcrypt_init);
module_exit(pcrypt_exit);

MODULE_LICENSE("GPL");
MODULE_AUTHOR("Steffen Klassert <steffen.klassert@secunet.com>");
MODULE_DESCRIPTION("Parallel crypto wrapper");
MODULE_ALIAS_CRYPTO("pcrypt");
back to top