Revision 24a70313969fc3fc440216b40babdb42564acff3 authored by Chris Mason on 21 November 2011, 14:39:11 UTC, committed by Chris Mason on 21 November 2011, 19:57:33 UTC
The log replay code only partially loads block groups, since
the block group caching code is able to detect and deal with
extents the logging code has pinned down.

While the logging code is pinning down block groups, there is
a bogus WARN_ON we're hitting if the code wasn't able to find
an extent in the cache.  This commit removes the warning because
it can happen any time there isn't a valid free space cache
for that block group.

Signed-off-by: Chris Mason <chris.mason@oracle.com>
1 parent 4d479cf
Raw File
fid.c
/*
 * V9FS FID Management
 *
 *  Copyright (C) 2007 by Latchesar Ionkov <lucho@ionkov.net>
 *  Copyright (C) 2005, 2006 by Eric Van Hensbergen <ericvh@gmail.com>
 *
 *  This program is free software; you can redistribute it and/or modify
 *  it under the terms of the GNU General Public License version 2
 *  as published by the Free Software Foundation.
 *
 *  This program is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *  GNU General Public License for more details.
 *
 *  You should have received a copy of the GNU General Public License
 *  along with this program; if not, write to:
 *  Free Software Foundation
 *  51 Franklin Street, Fifth Floor
 *  Boston, MA  02111-1301  USA
 *
 */

#include <linux/module.h>
#include <linux/errno.h>
#include <linux/fs.h>
#include <linux/slab.h>
#include <linux/sched.h>
#include <linux/idr.h>
#include <net/9p/9p.h>
#include <net/9p/client.h>

#include "v9fs.h"
#include "v9fs_vfs.h"
#include "fid.h"

/**
 * v9fs_fid_add - add a fid to a dentry
 * @dentry: dentry that the fid is being added to
 * @fid: fid to add
 *
 */

int v9fs_fid_add(struct dentry *dentry, struct p9_fid *fid)
{
	struct v9fs_dentry *dent;

	P9_DPRINTK(P9_DEBUG_VFS, "fid %d dentry %s\n",
					fid->fid, dentry->d_name.name);

	dent = dentry->d_fsdata;
	if (!dent) {
		dent = kmalloc(sizeof(struct v9fs_dentry), GFP_KERNEL);
		if (!dent)
			return -ENOMEM;

		spin_lock_init(&dent->lock);
		INIT_LIST_HEAD(&dent->fidlist);
		dentry->d_fsdata = dent;
	}

	spin_lock(&dent->lock);
	list_add(&fid->dlist, &dent->fidlist);
	spin_unlock(&dent->lock);

	return 0;
}

/**
 * v9fs_fid_find - retrieve a fid that belongs to the specified uid
 * @dentry: dentry to look for fid in
 * @uid: return fid that belongs to the specified user
 * @any: if non-zero, return any fid associated with the dentry
 *
 */

static struct p9_fid *v9fs_fid_find(struct dentry *dentry, u32 uid, int any)
{
	struct v9fs_dentry *dent;
	struct p9_fid *fid, *ret;

	P9_DPRINTK(P9_DEBUG_VFS, " dentry: %s (%p) uid %d any %d\n",
		dentry->d_name.name, dentry, uid, any);
	dent = (struct v9fs_dentry *) dentry->d_fsdata;
	ret = NULL;
	if (dent) {
		spin_lock(&dent->lock);
		list_for_each_entry(fid, &dent->fidlist, dlist) {
			if (any || fid->uid == uid) {
				ret = fid;
				break;
			}
		}
		spin_unlock(&dent->lock);
	}

	return ret;
}

/*
 * We need to hold v9ses->rename_sem as long as we hold references
 * to returned path array. Array element contain pointers to
 * dentry names.
 */
static int build_path_from_dentry(struct v9fs_session_info *v9ses,
				  struct dentry *dentry, char ***names)
{
	int n = 0, i;
	char **wnames;
	struct dentry *ds;

	for (ds = dentry; !IS_ROOT(ds); ds = ds->d_parent)
		n++;

	wnames = kmalloc(sizeof(char *) * n, GFP_KERNEL);
	if (!wnames)
		goto err_out;

	for (ds = dentry, i = (n-1); i >= 0; i--, ds = ds->d_parent)
		wnames[i] = (char  *)ds->d_name.name;

	*names = wnames;
	return n;
err_out:
	return -ENOMEM;
}

static struct p9_fid *v9fs_fid_lookup_with_uid(struct dentry *dentry,
					       uid_t uid, int any)
{
	struct dentry *ds;
	char **wnames, *uname;
	int i, n, l, clone, access;
	struct v9fs_session_info *v9ses;
	struct p9_fid *fid, *old_fid = NULL;

	v9ses = v9fs_dentry2v9ses(dentry);
	access = v9ses->flags & V9FS_ACCESS_MASK;
	fid = v9fs_fid_find(dentry, uid, any);
	if (fid)
		return fid;
	/*
	 * we don't have a matching fid. To do a TWALK we need
	 * parent fid. We need to prevent rename when we want to
	 * look at the parent.
	 */
	down_read(&v9ses->rename_sem);
	ds = dentry->d_parent;
	fid = v9fs_fid_find(ds, uid, any);
	if (fid) {
		/* Found the parent fid do a lookup with that */
		fid = p9_client_walk(fid, 1, (char **)&dentry->d_name.name, 1);
		goto fid_out;
	}
	up_read(&v9ses->rename_sem);

	/* start from the root and try to do a lookup */
	fid = v9fs_fid_find(dentry->d_sb->s_root, uid, any);
	if (!fid) {
		/* the user is not attached to the fs yet */
		if (access == V9FS_ACCESS_SINGLE)
			return ERR_PTR(-EPERM);

		if (v9fs_proto_dotu(v9ses) || v9fs_proto_dotl(v9ses))
				uname = NULL;
		else
			uname = v9ses->uname;

		fid = p9_client_attach(v9ses->clnt, NULL, uname, uid,
				       v9ses->aname);
		if (IS_ERR(fid))
			return fid;

		v9fs_fid_add(dentry->d_sb->s_root, fid);
	}
	/* If we are root ourself just return that */
	if (dentry->d_sb->s_root == dentry)
		return fid;
	/*
	 * Do a multipath walk with attached root.
	 * When walking parent we need to make sure we
	 * don't have a parallel rename happening
	 */
	down_read(&v9ses->rename_sem);
	n  = build_path_from_dentry(v9ses, dentry, &wnames);
	if (n < 0) {
		fid = ERR_PTR(n);
		goto err_out;
	}
	clone = 1;
	i = 0;
	while (i < n) {
		l = min(n - i, P9_MAXWELEM);
		/*
		 * We need to hold rename lock when doing a multipath
		 * walk to ensure none of the patch component change
		 */
		fid = p9_client_walk(fid, l, &wnames[i], clone);
		if (IS_ERR(fid)) {
			if (old_fid) {
				/*
				 * If we fail, clunk fid which are mapping
				 * to path component and not the last component
				 * of the path.
				 */
				p9_client_clunk(old_fid);
			}
			kfree(wnames);
			goto err_out;
		}
		old_fid = fid;
		i += l;
		clone = 0;
	}
	kfree(wnames);
fid_out:
	if (!IS_ERR(fid))
		v9fs_fid_add(dentry, fid);
err_out:
	up_read(&v9ses->rename_sem);
	return fid;
}

/**
 * v9fs_fid_lookup - lookup for a fid, try to walk if not found
 * @dentry: dentry to look for fid in
 *
 * Look for a fid in the specified dentry for the current user.
 * If no fid is found, try to create one walking from a fid from the parent
 * dentry (if it has one), or the root dentry. If the user haven't accessed
 * the fs yet, attach now and walk from the root.
 */

struct p9_fid *v9fs_fid_lookup(struct dentry *dentry)
{
	uid_t uid;
	int  any, access;
	struct v9fs_session_info *v9ses;

	v9ses = v9fs_dentry2v9ses(dentry);
	access = v9ses->flags & V9FS_ACCESS_MASK;
	switch (access) {
	case V9FS_ACCESS_SINGLE:
	case V9FS_ACCESS_USER:
	case V9FS_ACCESS_CLIENT:
		uid = current_fsuid();
		any = 0;
		break;

	case V9FS_ACCESS_ANY:
		uid = v9ses->uid;
		any = 1;
		break;

	default:
		uid = ~0;
		any = 0;
		break;
	}
	return v9fs_fid_lookup_with_uid(dentry, uid, any);
}

struct p9_fid *v9fs_fid_clone(struct dentry *dentry)
{
	struct p9_fid *fid, *ret;

	fid = v9fs_fid_lookup(dentry);
	if (IS_ERR(fid))
		return fid;

	ret = p9_client_walk(fid, 0, NULL, 1);
	return ret;
}

static struct p9_fid *v9fs_fid_clone_with_uid(struct dentry *dentry, uid_t uid)
{
	struct p9_fid *fid, *ret;

	fid = v9fs_fid_lookup_with_uid(dentry, uid, 0);
	if (IS_ERR(fid))
		return fid;

	ret = p9_client_walk(fid, 0, NULL, 1);
	return ret;
}

struct p9_fid *v9fs_writeback_fid(struct dentry *dentry)
{
	int err;
	struct p9_fid *fid;

	fid = v9fs_fid_clone_with_uid(dentry, 0);
	if (IS_ERR(fid))
		goto error_out;
	/*
	 * writeback fid will only be used to write back the
	 * dirty pages. We always request for the open fid in read-write
	 * mode so that a partial page write which result in page
	 * read can work.
	 */
	err = p9_client_open(fid, O_RDWR);
	if (err < 0) {
		p9_client_clunk(fid);
		fid = ERR_PTR(err);
		goto error_out;
	}
error_out:
	return fid;
}
back to top