Revision 25fb6ca4ed9cad72f14f61629b68dc03c0d9713f authored by Balakumaran Kannan on 02 April 2013, 10:45:05 UTC, committed by David S. Miller on 02 April 2013, 18:37:19 UTC
IPv6 Routing table becomes broken once we do ifdown, ifup of the loopback(lo)
interface. After down-up, routes of other interface's IPv6 addresses through
'lo' are lost.

IPv6 addresses assigned to all interfaces are routed through 'lo' for internal
communication. Once 'lo' is down, those routing entries are removed from routing
table. But those removed entries are not being re-created properly when 'lo' is
brought up. So IPv6 addresses of other interfaces becomes unreachable from the
same machine. Also this breaks communication with other machines because of
NDISC packet processing failure.

This patch fixes this issue by reading all interface's IPv6 addresses and adding
them to IPv6 routing table while bringing up 'lo'.

==Testing==
Before applying the patch:
$ route -A inet6
Kernel IPv6 routing table
Destination                    Next Hop                   Flag Met Ref Use If
2000::20/128                   ::                         U    256 0     0 eth0
fe80::/64                      ::                         U    256 0     0 eth0
::/0                           ::                         !n   -1  1     1 lo
::1/128                        ::                         Un   0   1     0 lo
2000::20/128                   ::                         Un   0   1     0 lo
fe80::xxxx:xxxx:xxxx:xxxx/128  ::                         Un   0   1     0 lo
ff00::/8                       ::                         U    256 0     0 eth0
::/0                           ::                         !n   -1  1     1 lo
$ sudo ifdown lo
$ sudo ifup lo
$ route -A inet6
Kernel IPv6 routing table
Destination                    Next Hop                   Flag Met Ref Use If
2000::20/128                   ::                         U    256 0     0 eth0
fe80::/64                      ::                         U    256 0     0 eth0
::/0                           ::                         !n   -1  1     1 lo
::1/128                        ::                         Un   0   1     0 lo
ff00::/8                       ::                         U    256 0     0 eth0
::/0                           ::                         !n   -1  1     1 lo
$

After applying the patch:
$ route -A inet6
Kernel IPv6 routing
table
Destination                    Next Hop                   Flag Met Ref Use If
2000::20/128                   ::                         U    256 0     0 eth0
fe80::/64                      ::                         U    256 0     0 eth0
::/0                           ::                         !n   -1  1     1 lo
::1/128                        ::                         Un   0   1     0 lo
2000::20/128                   ::                         Un   0   1     0 lo
fe80::xxxx:xxxx:xxxx:xxxx/128  ::                         Un   0   1     0 lo
ff00::/8                       ::                         U    256 0     0 eth0
::/0                           ::                         !n   -1  1     1 lo
$ sudo ifdown lo
$ sudo ifup lo
$ route -A inet6
Kernel IPv6 routing table
Destination                    Next Hop                   Flag Met Ref Use If
2000::20/128                   ::                         U    256 0     0 eth0
fe80::/64                      ::                         U    256 0     0 eth0
::/0                           ::                         !n   -1  1     1 lo
::1/128                        ::                         Un   0   1     0 lo
2000::20/128                   ::                         Un   0   1     0 lo
fe80::xxxx:xxxx:xxxx:xxxx/128  ::                         Un   0   1     0 lo
ff00::/8                       ::                         U    256 0     0 eth0
::/0                           ::                         !n   -1  1     1 lo
$

Signed-off-by: Balakumaran Kannan <Balakumaran.Kannan@ap.sony.com>
Signed-off-by: Maruthi Thotad <Maruthi.Thotad@ap.sony.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
1 parent f0f6ee1
Raw File
swap_state.c
/*
 *  linux/mm/swap_state.c
 *
 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
 *  Swap reorganised 29.12.95, Stephen Tweedie
 *
 *  Rewritten to use page cache, (C) 1998 Stephen Tweedie
 */
#include <linux/mm.h>
#include <linux/gfp.h>
#include <linux/kernel_stat.h>
#include <linux/swap.h>
#include <linux/swapops.h>
#include <linux/init.h>
#include <linux/pagemap.h>
#include <linux/backing-dev.h>
#include <linux/blkdev.h>
#include <linux/pagevec.h>
#include <linux/migrate.h>
#include <linux/page_cgroup.h>

#include <asm/pgtable.h>

/*
 * swapper_space is a fiction, retained to simplify the path through
 * vmscan's shrink_page_list.
 */
static const struct address_space_operations swap_aops = {
	.writepage	= swap_writepage,
	.set_page_dirty	= swap_set_page_dirty,
	.migratepage	= migrate_page,
};

static struct backing_dev_info swap_backing_dev_info = {
	.name		= "swap",
	.capabilities	= BDI_CAP_NO_ACCT_AND_WRITEBACK | BDI_CAP_SWAP_BACKED,
};

struct address_space swapper_spaces[MAX_SWAPFILES] = {
	[0 ... MAX_SWAPFILES - 1] = {
		.page_tree	= RADIX_TREE_INIT(GFP_ATOMIC|__GFP_NOWARN),
		.a_ops		= &swap_aops,
		.backing_dev_info = &swap_backing_dev_info,
	}
};

#define INC_CACHE_INFO(x)	do { swap_cache_info.x++; } while (0)

static struct {
	unsigned long add_total;
	unsigned long del_total;
	unsigned long find_success;
	unsigned long find_total;
} swap_cache_info;

unsigned long total_swapcache_pages(void)
{
	int i;
	unsigned long ret = 0;

	for (i = 0; i < MAX_SWAPFILES; i++)
		ret += swapper_spaces[i].nrpages;
	return ret;
}

void show_swap_cache_info(void)
{
	printk("%lu pages in swap cache\n", total_swapcache_pages());
	printk("Swap cache stats: add %lu, delete %lu, find %lu/%lu\n",
		swap_cache_info.add_total, swap_cache_info.del_total,
		swap_cache_info.find_success, swap_cache_info.find_total);
	printk("Free swap  = %ldkB\n",
		get_nr_swap_pages() << (PAGE_SHIFT - 10));
	printk("Total swap = %lukB\n", total_swap_pages << (PAGE_SHIFT - 10));
}

/*
 * __add_to_swap_cache resembles add_to_page_cache_locked on swapper_space,
 * but sets SwapCache flag and private instead of mapping and index.
 */
static int __add_to_swap_cache(struct page *page, swp_entry_t entry)
{
	int error;
	struct address_space *address_space;

	VM_BUG_ON(!PageLocked(page));
	VM_BUG_ON(PageSwapCache(page));
	VM_BUG_ON(!PageSwapBacked(page));

	page_cache_get(page);
	SetPageSwapCache(page);
	set_page_private(page, entry.val);

	address_space = swap_address_space(entry);
	spin_lock_irq(&address_space->tree_lock);
	error = radix_tree_insert(&address_space->page_tree,
					entry.val, page);
	if (likely(!error)) {
		address_space->nrpages++;
		__inc_zone_page_state(page, NR_FILE_PAGES);
		INC_CACHE_INFO(add_total);
	}
	spin_unlock_irq(&address_space->tree_lock);

	if (unlikely(error)) {
		/*
		 * Only the context which have set SWAP_HAS_CACHE flag
		 * would call add_to_swap_cache().
		 * So add_to_swap_cache() doesn't returns -EEXIST.
		 */
		VM_BUG_ON(error == -EEXIST);
		set_page_private(page, 0UL);
		ClearPageSwapCache(page);
		page_cache_release(page);
	}

	return error;
}


int add_to_swap_cache(struct page *page, swp_entry_t entry, gfp_t gfp_mask)
{
	int error;

	error = radix_tree_preload(gfp_mask);
	if (!error) {
		error = __add_to_swap_cache(page, entry);
		radix_tree_preload_end();
	}
	return error;
}

/*
 * This must be called only on pages that have
 * been verified to be in the swap cache.
 */
void __delete_from_swap_cache(struct page *page)
{
	swp_entry_t entry;
	struct address_space *address_space;

	VM_BUG_ON(!PageLocked(page));
	VM_BUG_ON(!PageSwapCache(page));
	VM_BUG_ON(PageWriteback(page));

	entry.val = page_private(page);
	address_space = swap_address_space(entry);
	radix_tree_delete(&address_space->page_tree, page_private(page));
	set_page_private(page, 0);
	ClearPageSwapCache(page);
	address_space->nrpages--;
	__dec_zone_page_state(page, NR_FILE_PAGES);
	INC_CACHE_INFO(del_total);
}

/**
 * add_to_swap - allocate swap space for a page
 * @page: page we want to move to swap
 *
 * Allocate swap space for the page and add the page to the
 * swap cache.  Caller needs to hold the page lock. 
 */
int add_to_swap(struct page *page)
{
	swp_entry_t entry;
	int err;

	VM_BUG_ON(!PageLocked(page));
	VM_BUG_ON(!PageUptodate(page));

	entry = get_swap_page();
	if (!entry.val)
		return 0;

	if (unlikely(PageTransHuge(page)))
		if (unlikely(split_huge_page(page))) {
			swapcache_free(entry, NULL);
			return 0;
		}

	/*
	 * Radix-tree node allocations from PF_MEMALLOC contexts could
	 * completely exhaust the page allocator. __GFP_NOMEMALLOC
	 * stops emergency reserves from being allocated.
	 *
	 * TODO: this could cause a theoretical memory reclaim
	 * deadlock in the swap out path.
	 */
	/*
	 * Add it to the swap cache and mark it dirty
	 */
	err = add_to_swap_cache(page, entry,
			__GFP_HIGH|__GFP_NOMEMALLOC|__GFP_NOWARN);

	if (!err) {	/* Success */
		SetPageDirty(page);
		return 1;
	} else {	/* -ENOMEM radix-tree allocation failure */
		/*
		 * add_to_swap_cache() doesn't return -EEXIST, so we can safely
		 * clear SWAP_HAS_CACHE flag.
		 */
		swapcache_free(entry, NULL);
		return 0;
	}
}

/*
 * This must be called only on pages that have
 * been verified to be in the swap cache and locked.
 * It will never put the page into the free list,
 * the caller has a reference on the page.
 */
void delete_from_swap_cache(struct page *page)
{
	swp_entry_t entry;
	struct address_space *address_space;

	entry.val = page_private(page);

	address_space = swap_address_space(entry);
	spin_lock_irq(&address_space->tree_lock);
	__delete_from_swap_cache(page);
	spin_unlock_irq(&address_space->tree_lock);

	swapcache_free(entry, page);
	page_cache_release(page);
}

/* 
 * If we are the only user, then try to free up the swap cache. 
 * 
 * Its ok to check for PageSwapCache without the page lock
 * here because we are going to recheck again inside
 * try_to_free_swap() _with_ the lock.
 * 					- Marcelo
 */
static inline void free_swap_cache(struct page *page)
{
	if (PageSwapCache(page) && !page_mapped(page) && trylock_page(page)) {
		try_to_free_swap(page);
		unlock_page(page);
	}
}

/* 
 * Perform a free_page(), also freeing any swap cache associated with
 * this page if it is the last user of the page.
 */
void free_page_and_swap_cache(struct page *page)
{
	free_swap_cache(page);
	page_cache_release(page);
}

/*
 * Passed an array of pages, drop them all from swapcache and then release
 * them.  They are removed from the LRU and freed if this is their last use.
 */
void free_pages_and_swap_cache(struct page **pages, int nr)
{
	struct page **pagep = pages;

	lru_add_drain();
	while (nr) {
		int todo = min(nr, PAGEVEC_SIZE);
		int i;

		for (i = 0; i < todo; i++)
			free_swap_cache(pagep[i]);
		release_pages(pagep, todo, 0);
		pagep += todo;
		nr -= todo;
	}
}

/*
 * Lookup a swap entry in the swap cache. A found page will be returned
 * unlocked and with its refcount incremented - we rely on the kernel
 * lock getting page table operations atomic even if we drop the page
 * lock before returning.
 */
struct page * lookup_swap_cache(swp_entry_t entry)
{
	struct page *page;

	page = find_get_page(swap_address_space(entry), entry.val);

	if (page)
		INC_CACHE_INFO(find_success);

	INC_CACHE_INFO(find_total);
	return page;
}

/* 
 * Locate a page of swap in physical memory, reserving swap cache space
 * and reading the disk if it is not already cached.
 * A failure return means that either the page allocation failed or that
 * the swap entry is no longer in use.
 */
struct page *read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask,
			struct vm_area_struct *vma, unsigned long addr)
{
	struct page *found_page, *new_page = NULL;
	int err;

	do {
		/*
		 * First check the swap cache.  Since this is normally
		 * called after lookup_swap_cache() failed, re-calling
		 * that would confuse statistics.
		 */
		found_page = find_get_page(swap_address_space(entry),
					entry.val);
		if (found_page)
			break;

		/*
		 * Get a new page to read into from swap.
		 */
		if (!new_page) {
			new_page = alloc_page_vma(gfp_mask, vma, addr);
			if (!new_page)
				break;		/* Out of memory */
		}

		/*
		 * call radix_tree_preload() while we can wait.
		 */
		err = radix_tree_preload(gfp_mask & GFP_KERNEL);
		if (err)
			break;

		/*
		 * Swap entry may have been freed since our caller observed it.
		 */
		err = swapcache_prepare(entry);
		if (err == -EEXIST) {	/* seems racy */
			radix_tree_preload_end();
			continue;
		}
		if (err) {		/* swp entry is obsolete ? */
			radix_tree_preload_end();
			break;
		}

		/* May fail (-ENOMEM) if radix-tree node allocation failed. */
		__set_page_locked(new_page);
		SetPageSwapBacked(new_page);
		err = __add_to_swap_cache(new_page, entry);
		if (likely(!err)) {
			radix_tree_preload_end();
			/*
			 * Initiate read into locked page and return.
			 */
			lru_cache_add_anon(new_page);
			swap_readpage(new_page);
			return new_page;
		}
		radix_tree_preload_end();
		ClearPageSwapBacked(new_page);
		__clear_page_locked(new_page);
		/*
		 * add_to_swap_cache() doesn't return -EEXIST, so we can safely
		 * clear SWAP_HAS_CACHE flag.
		 */
		swapcache_free(entry, NULL);
	} while (err != -ENOMEM);

	if (new_page)
		page_cache_release(new_page);
	return found_page;
}

/**
 * swapin_readahead - swap in pages in hope we need them soon
 * @entry: swap entry of this memory
 * @gfp_mask: memory allocation flags
 * @vma: user vma this address belongs to
 * @addr: target address for mempolicy
 *
 * Returns the struct page for entry and addr, after queueing swapin.
 *
 * Primitive swap readahead code. We simply read an aligned block of
 * (1 << page_cluster) entries in the swap area. This method is chosen
 * because it doesn't cost us any seek time.  We also make sure to queue
 * the 'original' request together with the readahead ones...
 *
 * This has been extended to use the NUMA policies from the mm triggering
 * the readahead.
 *
 * Caller must hold down_read on the vma->vm_mm if vma is not NULL.
 */
struct page *swapin_readahead(swp_entry_t entry, gfp_t gfp_mask,
			struct vm_area_struct *vma, unsigned long addr)
{
	struct page *page;
	unsigned long offset = swp_offset(entry);
	unsigned long start_offset, end_offset;
	unsigned long mask = (1UL << page_cluster) - 1;
	struct blk_plug plug;

	/* Read a page_cluster sized and aligned cluster around offset. */
	start_offset = offset & ~mask;
	end_offset = offset | mask;
	if (!start_offset)	/* First page is swap header. */
		start_offset++;

	blk_start_plug(&plug);
	for (offset = start_offset; offset <= end_offset ; offset++) {
		/* Ok, do the async read-ahead now */
		page = read_swap_cache_async(swp_entry(swp_type(entry), offset),
						gfp_mask, vma, addr);
		if (!page)
			continue;
		page_cache_release(page);
	}
	blk_finish_plug(&plug);

	lru_add_drain();	/* Push any new pages onto the LRU now */
	return read_swap_cache_async(entry, gfp_mask, vma, addr);
}
back to top