Skip to main content
  • Home
  • Development
  • Documentation
  • Donate
  • Operational login
  • Browse the archive

swh logo
SoftwareHeritage
Software
Heritage
Archive
Features
  • Search

  • Downloads

  • Save code now

  • Add forge now

  • Help

Revision 291ae6c7dbfcbded27c604f136982a5067d14b8e authored by thevincentadam on 20 January 2020, 12:17:20 UTC, committed by thevincentadam on 20 January 2020, 12:17:20 UTC
add conditioned mean function
1 parent 5dc31b8
  • Files
  • Changes
  • 4784424
  • /
  • README.md
Raw File Download
Permalinks

To reference or cite the objects present in the Software Heritage archive, permalinks based on SoftWare Hash IDentifiers (SWHIDs) must be used.
Select below a type of object currently browsed in order to display its associated SWHID and permalink.

  • revision
  • directory
  • content
revision badge
swh:1:rev:291ae6c7dbfcbded27c604f136982a5067d14b8e
directory badge Iframe embedding
swh:1:dir:4784424ed52288e5dea7abfbe83298cad2c01e3a
content badge Iframe embedding
swh:1:cnt:39b5bba5dcfc4e0229ec092c4b6eae496ce7f26b
Citations

This interface enables to generate software citations, provided that the root directory of browsed objects contains a citation.cff or codemeta.json file.
Select below a type of object currently browsed in order to generate citations for them.

  • revision
  • directory
  • content
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
README.md
<div style="text-align:center">
<img width="500" height="200" src="./doc/source/_static/gpflow_logo.svg">
</div>

[![CircleCI](https://circleci.com/gh/GPflow/GPflow/tree/develop.svg?style=svg)](https://circleci.com/gh/GPflow/GPflow/tree/develop)
[![Coverage Status](http://codecov.io/github/GPflow/GPflow/coverage.svg?branch=master)](http://codecov.io/github/GPflow/GPflow?branch=master)
[![Documentation Status](https://readthedocs.org/projects/gpflow/badge/?version=master)](http://gpflow.readthedocs.io/en/master/?badge=master)

[Website](https://gpflow.org) |
[Documentation (develop/v2.0)](https://gpflow.readthedocs.io/en/develop/) |
[Documentation (v1.5)](https://gpflow.readthedocs.io/en/v1.5.1-docs/) |
[Glossary](GLOSSARY.md)

GPflow is a package for building Gaussian process models in python, using [TensorFlow](http://www.tensorflow.org). It was originally created and is now managed by [James Hensman](http://jameshensman.github.io/) and [Alexander G. de G. Matthews](http://mlg.eng.cam.ac.uk/?portfolio=alex-matthews).
The full list of [contributors](http://github.com/GPflow/GPflow/graphs/contributors) (in alphabetical order) is
 Alexander G. de G. Matthews, Alexis Boukouvalas, [Artem Artemev](http://github.com/awav/), Daniel Marthaler, David J
 . Harris, Eric Hambro, Hugh Salimbeni, Ivo Couckuyt, James Hensman, Keisuke Fujii, Mark van der Wilk, Mikhail Beck, Pablo Leon
 -Villagra, Rasmus Bonnevie, Sergio Pascual-Diaz, ST John, Tom Nickson, Valentine Svensson, Vincent Dutordoir, Zoubin
  Ghahramani. GPflow is an open source project so if you feel you have some relevant skills and are interested in contributing then please do contact us.


## What does GPflow do?

GPflow implements modern Gaussian process inference for composable kernels and likelihoods. The [online documentation (develop)](http://gpflow.readthedocs.io/en/develop/)/[(master)](http://gpflow.readthedocs.io/en/master/) contains more details.

GPflow 2.0 uses [TensorFlow 2.0](http://www.tensorflow.org) for running computations, which allows fast execution on GPUs, and uses Python ≥ 3.6.


## Install GPflow

- From source

  With the release of _TensorFlow 2.0_ and _Tensorflow Probability_ 0.8, you should
  only need to run

  ```bash
  pip install -e .
  ```

  in a check-out of the `develop` branch of the GPflow github repository.

- Using `pip`

  ```bash
  pip install gpflow
  ```


## Getting Started with GPflow 2.0

There is an ["Intro to GPflow 2.0"](https://github.com/GPflow/GPflow/blob/develop/doc/source/notebooks/intro_to_gpflow2.ipynb) Jupyter notebook; check it out for details. To convert your code from GPflow 1 check the [GPflow 2 upgrade guide](https://github.com/GPflow/GPflow/blob/develop/doc/source/notebooks/gpflow_2_upgrade/gpflow2_upgrade_guide.ipynb).

- **GPflow 1.0**

  *We have stopped development and support for GPflow based on TensorFlow 1.0. We now accept only bug fixes to GPflow 1.0 in the **develop-1.0** branch. The latest available release is [v1.5.1](https://github.com/GPflow/GPflow/releases/tag/v1.5.1). [Documentation](https://gpflow.readthedocs.io/en/v1.5.1-docs/) and [tutorials](https://nbviewer.jupyter.org/github/GPflow/GPflow/blob/develop/doc/source/notebooks/intro.ipynb) will remain available.*


## Getting help

Please use GitHub issues to start discussion on the use of GPflow. Tagging enquiries `discussion` helps us distinguish them from bugs.

## Contributing

All constructive input is gratefully received. For more information, see the [notes for contributors](contributing.md).

## Compatibility

GPflow heavily depends on TensorFlow and as far as TensorFlow supports forward compatibility, GPflow should as well. The version of GPflow can give you a hint about backward compatibility. If the major version has changed then you need to check the release notes to find out how the API has been changed.

Unfortunately, there is no such thing as backward compatibility for GPflow _models_, which means that a model implementation can change without changing interfaces. In other words, the TensorFlow graph can be different for the same models from different versions of GPflow.

## Projects using GPflow

A few projects building on GPflow and demonstrating its usage are listed below.

| Project | Description |
| --- | --- |
| [GPflowOpt](https://github.com/GPflow/GPflowOpt)       | Bayesian Optimization using GPflow. |
| [VFF](https://github.com/jameshensman/VFF)       | Variational Fourier Features for Gaussian Processes. |
| [Doubly-Stochastic-DGP](https://github.com/ICL-SML/Doubly-Stochastic-DGP)| Deep Gaussian Processes with Doubly Stochastic Variational Inference.|
| [BranchedGP](https://github.com/ManchesterBioinference/BranchedGP) | Gaussian processes with branching kernels.|
| [heterogp](https://github.com/Joshuaalbert/heterogp) | Heteroscedastic noise for sparse variational GP. |
| [widedeepnetworks](https://github.com/widedeepnetworks/widedeepnetworks) | Measuring the relationship between random wide deep neural networks and GPs.| 
| [orth_decoupled_var_gps](https://github.com/hughsalimbeni/orth_decoupled_var_gps) | Variationally sparse GPs with orthogonally decoupled bases| 
| [kernel_learning](https://github.com/frgsimpson/kernel_learning) | Implementation of "Differentiable Compositional Kernel Learning for Gaussian Processes".|
| [VBPP](https://github.com/st--/vbpp) | Implementation of "Variational Bayes for Point Processes".|
| [DGPs_with_IWVI](https://github.com/hughsalimbeni/DGPs_with_IWVI) | Deep Gaussian Processes with Importance-Weighted Variational Inference|


Let us know if you would like your project listed here.

## Citing GPflow

To cite GPflow, please reference the [JMLR paper](http://www.jmlr.org/papers/volume18/16-537/16-537.pdf). Sample Bibtex is given below:

```
@ARTICLE{GPflow2017,
   author = {Matthews, Alexander G. de G. and {van der Wilk}, Mark and Nickson, Tom and
	Fujii, Keisuke. and {Boukouvalas}, Alexis and {Le{\'o}n-Villagr{\'a}}, Pablo and
	Ghahramani, Zoubin and Hensman, James},
    title = "{{GP}flow: A {G}aussian process library using {T}ensor{F}low}",
  journal = {Journal of Machine Learning Research},
  year    = {2017},
  month = {apr},
  volume  = {18},
  number  = {40},
  pages   = {1-6},
  url     = {http://jmlr.org/papers/v18/16-537.html}
}
```
The diff you're trying to view is too large. Only the first 1000 changed files have been loaded.
Showing with 0 additions and 0 deletions (0 / 0 diffs computed)
swh spinner

Computing file changes ...

back to top

Software Heritage — Copyright (C) 2015–2025, The Software Heritage developers. License: GNU AGPLv3+.
The source code of Software Heritage itself is available on our development forge.
The source code files archived by Software Heritage are available under their own copyright and licenses.
Terms of use: Archive access, API— Contact— JavaScript license information— Web API