Revision 291ae6c7dbfcbded27c604f136982a5067d14b8e authored by thevincentadam on 20 January 2020, 12:17:20 UTC, committed by thevincentadam on 20 January 2020, 12:17:20 UTC
1 parent 5dc31b8
kuus.py
import tensorflow as tf
from ..inducing_variables import InducingPoints, Multiscale, InducingPatches
from ..kernels import Kernel, SquaredExponential, Convolutional
from .dispatch import Kuu
from ..config import default_float
@Kuu.register(InducingPoints, Kernel)
def Kuu_kernel_inducingpoints(inducing_variable: InducingPoints, kernel: Kernel, *, jitter=0.0):
Kzz = kernel(inducing_variable.Z)
Kzz += jitter * tf.eye(len(inducing_variable), dtype=Kzz.dtype)
return Kzz
@Kuu.register(Multiscale, SquaredExponential)
def Kuu_sqexp_multiscale(inducing_variable: Multiscale, kernel: SquaredExponential, *, jitter=0.0):
Zmu, Zlen = kernel.slice(inducing_variable.Z, inducing_variable.scales)
idlengthscale2 = tf.square(kernel.lengthscale + Zlen)
sc = tf.sqrt(idlengthscale2[None, ...] + idlengthscale2[:, None, ...] -
kernel.lengthscale ** 2)
d = inducing_variable._cust_square_dist(Zmu, Zmu, sc)
Kzz = kernel.variance * tf.exp(-d / 2) * tf.reduce_prod(
kernel.lengthscale / sc, 2)
Kzz += jitter * tf.eye(len(inducing_variable), dtype=Kzz.dtype)
return Kzz
@Kuu.register(InducingPatches, Convolutional)
def Kuu_conv_patch(feat, kern, jitter=0.0):
return kern.basekern.K(feat.Z) + jitter * tf.eye(len(feat), dtype=default_float())

Computing file changes ...