Revision 291ae6c7dbfcbded27c604f136982a5067d14b8e authored by thevincentadam on 20 January 2020, 12:17:20 UTC, committed by thevincentadam on 20 January 2020, 12:17:20 UTC
1 parent 5dc31b8
mo_kufs.py
from typing import Union
import tensorflow as tf
from ..inducing_variables import (InducingPoints, FallbackSharedIndependentInducingVariables,
FallbackSeparateIndependentInducingVariables, SharedIndependentInducingVariables,
SeparateIndependentInducingVariables)
from ..kernels import (MultioutputKernel, SeparateIndependent, LinearCoregionalization, SharedIndependent)
from .dispatch import Kuf
@Kuf.register(InducingPoints, MultioutputKernel, object)
def _Kuf(inducing_variable: InducingPoints, kernel: MultioutputKernel, Xnew: tf.Tensor):
return kernel(inducing_variable.Z, Xnew, full=True, full_output_cov=True) # [M, P, N, P]
@Kuf.register(SharedIndependentInducingVariables, SharedIndependent, object)
def _Kuf(inducing_variable: SharedIndependentInducingVariables, kernel: SharedIndependent, Xnew: tf.Tensor):
return Kuf(inducing_variable.inducing_variable_shared, kernel.kernel, Xnew) # [M, N]
@Kuf.register(SeparateIndependentInducingVariables, SharedIndependent, object)
def _Kuf(inducing_variable: SeparateIndependentInducingVariables, kernel: SharedIndependent, Xnew: tf.Tensor):
return tf.stack([Kuf(f, kernel.kernel, Xnew)
for f in inducing_variable.inducing_variable_list], axis=0) # [L, M, N]
@Kuf.register(SharedIndependentInducingVariables, SeparateIndependent, object)
def _Kuf(inducing_variable: SharedIndependentInducingVariables, kernel: SeparateIndependent, Xnew: tf.Tensor):
return tf.stack([Kuf(inducing_variable.inducing_variable_shared, k, Xnew) for k in kernel.kernels], axis=0) # [L, M, N]
@Kuf.register(SeparateIndependentInducingVariables, SeparateIndependent, object)
def _Kuf(inducing_variable: SeparateIndependentInducingVariables, kernel: SeparateIndependent, Xnew: tf.Tensor):
Kufs = [Kuf(f, k, Xnew) for f, k in zip(inducing_variable.inducing_variable_list, kernel.kernels)]
return tf.stack(Kufs, axis=0) # [L, M, N]
@Kuf.register((FallbackSeparateIndependentInducingVariables, FallbackSharedIndependentInducingVariables),
LinearCoregionalization,
object)
def _Kuf(inducing_variable: Union[SeparateIndependentInducingVariables, SharedIndependentInducingVariables],
kernel: LinearCoregionalization, Xnew: tf.Tensor):
kuf_impl = Kuf.dispatch(type(inducing_variable), SeparateIndependent, object)
K = tf.transpose(kuf_impl(inducing_variable, kernel, Xnew), [1, 0, 2]) # [M, L, N]
return K[:, :, :, None] * tf.transpose(kernel.W)[None, :, None, :] # [M, L, N, P]
@Kuf.register(SharedIndependentInducingVariables, LinearCoregionalization, object)
def _Kuf(inducing_variable: SharedIndependentInducingVariables, kernel: SeparateIndependent, Xnew: tf.Tensor):
return tf.stack([Kuf(inducing_variable.inducing_variable_shared, k, Xnew) for k in kernel.kernels], axis=0) # [L, M, N]
@Kuf.register(SeparateIndependentInducingVariables, LinearCoregionalization, object)
def _Kuf(inducing_variable, kernel, Xnew):
return tf.stack([Kuf(f, k, Xnew)
for f, k in zip(inducing_variable.inducing_variable_list, kernel.kernels)], axis=0) # [L, M, N]

Computing file changes ...