Revision 291ae6c7dbfcbded27c604f136982a5067d14b8e authored by thevincentadam on 20 January 2020, 12:17:20 UTC, committed by thevincentadam on 20 January 2020, 12:17:20 UTC
1 parent 5dc31b8
conditioned.py
from typing import Optional, Tuple
import tensorflow as tf
from .base import Kernel
from ..config import default_float, default_jitter
class Conditioned(Kernel):
"""
Conditioned kernel. Can be used to wrap any kernel
to transform it into a its conditioned version.
This provides a simple way to condition a Gaussian process on noiseless observations
From a covariance function k(.,.) and a conditioning dataset (Xc, Yc),
a new covariance function and a conditional mean function
are created as
kc(.,.) = k(.,.) - k(.,Xc)k(Xc, Xc)⁻¹k(Xc,.)
mc(.) = k(.,Xc)k(Xc, Xc)⁻¹Yc
"""
def __init__(self, base: Kernel, data_cond: Tuple[tf.Tensor, tf.Tensor]):
"""
:param base: the base kernel to make conditioned; must inherit from Kernel
:param xc: conditioning input
:param yc: conditioning output
"""
if not isinstance(base, Kernel):
raise TypeError("Conditioned requires a Kernel object as the `base`")
super().__init__()
self.base = base
self.data_cond = data_cond
self.X_cond, self.Y_cond = data_cond
self.num_cond = self.X_cond.shape[0]
@property
def chol_K_cond(self):
"""
The Cholesky factor of the Covariance at the conditioning inputs K(Xc, Xc)
"""
K_cond = self.base.K(self.X_cond) + \
tf.eye(self.num_cond, dtype=default_float()) * default_jitter()
return tf.linalg.cholesky(K_cond)
def K_diag(self, X: tf.Tensor, presliced: bool = False) -> tf.Tensor:
K_condx = self.base.K(self.X_cond, X)
U = tf.linalg.triangular_solve(self.chol_K_cond, K_condx)
return self.base.K_diag(X) - tf.reduce_sum(tf.square(U), axis=-2)
def K(self, X: tf.Tensor, X2: Optional[tf.Tensor] = None, presliced: bool = False) -> tf.Tensor:
K_condx = self.base.K(self.X_cond, X)
U_condx = tf.linalg.triangular_solve(self.chol_K_cond, K_condx)
if X2 is None:
return self.base.K(X) - tf.matmul(U_condx, U_condx, transpose_a=True)
else:
K_condx2 = self.base.K(self.X_cond, X2)
U_condx2 = tf.linalg.triangular_solve(self.chol_K_cond, K_condx2)
return self.base.K(X) - tf.matmul(U_condx, U_condx2, transpose_a=True)
def conditional_mean(self, X: tf.Tensor):
K_xcond = self.base.K(X, self.X_cond)
return K_xcond @ tf.linalg.cholesky_solve(self.chol_K_cond, self.Y_cond)

Computing file changes ...