Revision 2b3a85a87089d85cfbcc67cac5d6778f94719b8d authored by Roger Koenker on 15 July 2019, 13:00:03 UTC, committed by cran-robot on 15 July 2019, 13:00:03 UTC
1 parent 5071707
rqbr.r
# This is a special version of K-dO rq modified to compute the LR process
# Note that the sol array is now p+3 by J and the third row contains the
# value of the objective function at the tau specified in row one.
#
# This software is in the public domain and may be freely
# used and redistributed for non-commercial purposes. No guarantees
# are offered or implied. comments, bug reports, etc are welcome
# and should be sent to roger@ysidro.econ.uiuc.edu or to
#
# roger koenker
# department of economics
# university of illinois
# champaign, illinois, 61820
#
#
subroutine rqbr(m,nn,m5,n3,n4,a,b,t,toler,ift,x,e,s,wa,wb,nsol,ndsol,sol,dsol,lsol,h,qn,cutoff,ci,tnmat,big,lci1)
#
# m = number of observations
# n = number of parameters
# m5 = m+5
# n3 = n+3
# n4 = n+4
# a is the x matrix
# b is the y vector
# t, the desired quantile
# toler, smallest detectable |x-y|/x machine precision to the 2/3
# ift exit code:
# 0-ok
# else dimensions inconsistent see below
# x the parameter estimate betahat
# e is the residual vector
# s is an integer work array
# wa is a real work array
# wb is another real work array
# nsol is an estimated (row) dimension of the primal solution array say 3*m; minimum value = 2
# ndsol is an estimated (row) dimension of the dual solution array say 3*m; minimum value = 2
# sol is the primal solution array
# dsol is the dual solution arry
# lsol is the actual dimension of the solution arrays
# h is the matrix of basic observations indices
# qn is the vector of residuals variances from the projection of each column of the x matrix on the remaining columns
# cutoff, the critical point for N(0,1)
# ci is the matrix of confidence intervals
# tnmat is the matrix of the JGPK rank test statistics
# big, large positive finite floating-point number
# utilization: if you just want a solution at a single quantile you
# neednt bother with sol, nsol, etc, if you want all the solutions
# then set theta to something <0 and sol and dsol will return all the
# estimated quantile solutions.
# the algorithm is a slightly modified version of algorithm as 229
# described in koenker and dorey, computing regression quantiles,
# applied statistics, pp. 383-393.
#
integer i,j,k,kl,kount,kr,l,lsol,m,m1,m2,m3,m4,m5,ift
integer n,n1,n2,n3,nsol,ndsol,out,s(m),h(nn,nsol)
integer nn,n4,idxcf
logical stage,test,init,iend,lup
logical lci1,lci2,skip
double precision a1,aux,b1,big,d,dif,pivot,smax,t,t0,t1,tnt
double precision min,max,toler,zero,half,one,two
double precision b(m),sol(n3,nsol),a(m,nn),x(nn),wa(m5,n4),wb(m)
double precision sum,e(m),dsol(m,ndsol)
double precision qn(nn),cutoff,ci(4,nn),tnmat(4,nn),tnew,told,tn
parameter( zero = 0.d0)
parameter( one = 1.d0)
parameter( two = 2.d0)
#
# check dimension parameters
#
n=nn
ift = 0
wa(m+2,nn+1) = one
if (m5!=m+5)
ift = 3
if (n3!=n+3)
ift = 4
if (n4!=n+4)
ift = 5
if (m<=zero||n<=zero)
ift = 6
if (ift<=two) {
#
# initialization
#
half = one/two
iend = .true.
lci2 = .false.
lup = .true.
skip = .false.
idxcf = 0
tnew = zero
tn = zero
m1 = m+1
n1 = n+1
n2 = n+2
m2 = m+2
m3 = m+3
m4 = m+4
do j = 1,n{
x(j) = zero
}
do i = 1,m
e(i) = zero
if (t<zero||t>one) {
t0 = one/(two*float(m))
t1 = one-t0
t = t0
iend = .false.
lci1 = .false.
}
repeat { #0
do i = 1,m {
k = 1
do j = 1,nn
if (k<=nn){
if(j==idxcf)
skip = .true.
else
skip = .false.
if(!skip){
wa(i,k) = a(i,j)
k = k+1
}
}
wa(i,n4) = n+i
wa(i,n2) = b(i)
if (idxcf != 0)
wa(i,n3) = tnew*a(i,idxcf)
else
wa(i,n3) = zero
wa(i,n1) = wa(i,n2)-wa(i,n3)
if (wa(i,n1)<zero)
do j = 1,n4
wa(i,j) = -wa(i,j)
}
do j = 1,n {
wa(m4,j) = j
wa(m2,j) = zero
wa(m3,j) = zero
do i = 1,m {
aux = sign(one,wa(m4,j))*wa(i,j)
wa(m2,j) = wa(m2,j)+aux*(one-sign(one,wa(i,n4)))
wa(m3,j) = wa(m3,j)+aux*sign(one,wa(i,n4))
}
wa(m3,j) = two*wa(m3,j)
}
dif = zero
init = .false.
if(!lci2){
#compute the columns means
do k = 1,n {
wa(m5,k) = zero
do i = 1,m{
wa(m5,k) = wa(m5,k)+a(i,k)
}
wa(m5,k) = wa(m5,k)/float(m)
}
}
lsol = 1
kount = 0
repeat { #1
#
# compute new marginal costs
#
do j = 1,n{
wa(m1,j) = wa(m2,j)+wa(m3,j)*t
}
if (!init) {
#
# stage 1
#
# determine the vector to enter the basis
#
stage = .true.
kr = 1
kl = 1
go to 30
}
repeat { #2
#
# stage 2
#
stage = .false.
repeat { #3
#
# determine the vector to enter the basis
#
max = -big
do j = kr,n {
d = wa(m1,j)
if (d<zero) {
if (d>(-two))
next 1
d = -d-two
}
if (d>max) {
max = d
in = j
}
}
if (max<=toler)
break 2
if (wa(m1,in)<=zero) {
do i = 1,m4
wa(i,in) = -wa(i,in)
wa(m1,in) = wa(m1,in)-two
wa(m2,in) = wa(m2,in)-two
}
repeat { #4
#
# determine the vector to leave the basis
#
k = 0
do i = kl,m {
d = wa(i,in)
if (d>toler) {
k = k+1
wb(k) = wa(i,n1)/d
s(k) = i
test = .true.
}
}
repeat { #5
if (k<=0)
test = .false.
else {
min = big
do i = 1,k
if (wb(i)<min) {
j = i
min = wb(i)
out = s(i)
}
wb(j) = wb(k)
s(j) = s(k)
k = k-1
}
#
# check for linear dependence in stage 1
#
if (!test&&stage)
break 1
if (!test)
break 5
pivot = wa(out,in)
if (wa(m1,in)-pivot-pivot<=toler){
go to 10
}
do j = kr,n3 {
d = wa(out,j)
wa(m1,j) = wa(m1,j)-d-d
wa(m2,j) = wa(m2,j)-d-d
wa(out,j) = -d
}
wa(out,n4) = -wa(out,n4)
} #5
do i = 1,m4 {
d = wa(i,kr)
wa(i,kr) = wa(i,in)
wa(i,in) = d
}
kr = kr+1
go to 20
#
# pivot on wa(out,in)
#
10 do j = kr,n3
if (j!=in)
wa(out,j) = wa(out,j)/pivot
do i = 1,m3
if (i!=out) {
d = wa(i,in)
do j = kr,n3
if (j!=in)
wa(i,j) = wa(i,j)-d*wa(out,j)
}
do i = 1,m3
if (i!=out)
wa(i,in) = -wa(i,in)/pivot
wa(out,in) = one/pivot
d = wa(out,n4)
wa(out,n4) = wa(m4,in)
wa(m4,in) = d
kount = kount+1
if (!stage)
break 1
#
# interchange rows in stage 1
#
kl = kl+1
do j = kr,n4 {
d = wa(out,j)
wa(out,j) = wa(kount,j)
wa(kount,j) = d
}
20 if (kount+kr==n1)
break 2
30 max = -one
do j = kr,n
if (abs(wa(m4,j))<=n) {
d = abs(wa(m1,j))
if (d>max) {
max = d
in = j
}
}
if (wa(m1,in)<zero)
do i = 1,m4
wa(i,in) = -wa(i,in)
} #4
} #3
} #2
if (kr==1) {
do j = 1,n {
d = abs(wa(m1,j))
if (d<=toler||two-d<=toler){
ift = 1
wa(m2,nn+1) = zero
go to 80
}
}
}
80 kount = 0
sum = zero
if (!lci2){
do i = 1,kl-1 {
k = wa(i,n4)*sign(one,wa(i,n4))
x(k) = wa(i,n1)*sign(one,wa(i,n4))
}
}
do i = 1,n {
kd = abs(wa(m4,i))-n
dsol(kd,lsol) = one+wa(m1,i)/two
if (wa(m4,i)<zero)
dsol(kd,lsol) = one-dsol(kd,lsol)
if (!lci2){
sum = sum + x(i)*wa(m5,i)
sol(i+3,lsol) = x(i)
h(i,lsol) = kd
}
}
do i = kl,m {
kd = abs(wa(i,n4))-n
if (wa(i,n4)<zero)
dsol(kd,lsol) = zero
if (wa(i,n4)>zero)
dsol(kd,lsol) = one
}
if (!lci2){
sol(1,lsol) = smax
sol(2,lsol) = sum
sum = zero
do j=kl,m{
d = wa(j,n1)*sign(one,wa(j,n4))
sum = sum + d*(smax + half*(sign(one,d) - one))
}
sol(3,lsol) = sum
do i=1,m
dsol(i,lsol+1) = dsol(i,lsol)
}
if (lci2){
# compute next theta
a1 = zero
do i = 1,m {
a1 = a1+a(i,idxcf)*(dsol(i,lsol)+t-one)
}
tn = a1/sqrt(qn(idxcf)*t*(one-t))
if (abs(tn)<cutoff){
if (lup)
smax = big
else
smax = -big
do i =1,kl-1 {
k = wa(i,n4)*sign(one,wa(i,n4))
sol(k,1) = wa(i,n2)*sign(one,wa(i,n4))
sol(k,2) = wa(i,n3)*sign(one,wa(i,n4))/tnew
}
do i = kl,m {
a1 = zero
b1 = zero
k = wa(i,n4)*sign(one,wa(i,n4))-n
l = 1
do j = 1,n{
if (j==idxcf)
l = l+1
a1 = a1 + a(k,l)*sol(j,1)
b1 = b1 + a(k,l)*sol(j,2)
l = l+1
}
tnt = (b(k)-a1)/(a(k,idxcf)-b1)
if (lup){
if (tnt>tnew)
if (tnt<smax){
smax = tnt
out = i
}
}
else {
if (tnt<tnew)
if (tnt>smax){
smax = tnt
out = i
}
}
}
if (lup){
told = tnew
tnew = smax + toler
ci(3,idxcf) = told - toler
tnmat(3,idxcf) = tn
if (!(tnew < big-toler)){
ci(3,idxcf) = big
ci(4,idxcf) = big
tnmat(3,idxcf) = tn
tnmat(4,idxcf) = tn
lup = .false.
go to 70
}
}
else{
told = tnew
tnew = smax - toler
ci(2,idxcf) = told + toler
tnmat(2,idxcf) = tn
if (!(tnew > -big+toler)){
ci(2,idxcf) = -big
ci(1,idxcf) = -big
tnmat(2,idxcf) = tn
tnmat(1,idxcf) = tn
lup = .true.
go to 60
}
}
#update the new marginal cost
do i = 1,m{
wa(i,n3) = wa(i,n3)/told*tnew
wa(i,n1) = wa(i,n2) - wa(i,n3)
}
do j = kr,n3{
d = wa(out,j)
wa(m1,j) = wa(m1,j) -d -d
wa(m2,j) = wa(m2,j) -d -d
wa(out,j) = -d
}
wa(out,n4) = -wa(out,n4)
init = .true.
}
else{
if (lup){
ci(4,idxcf) = tnew - toler
tnmat(4,idxcf) = tn
lup = .false.
go to 70
}
else{
ci(1,idxcf) = tnew + toler
tnmat(1,idxcf) = tn
lup = .true.
go to 60
}
}
}
if ((iend)&&(!lci2))
go to 40
if (!lci2){
init = .true.
lsol = lsol+1
do i = 1,m
s(i) = zero
do j = 1,n
x(j) = zero
#
# compute next t
#
smax = two
do j = 1,n {
b1 = wa(m3,j)
a1 = (-two-wa(m2,j))/b1
b1 = -wa(m2,j)/b1
if (a1>=t)
if (a1<smax) {
smax = a1
dif = (b1-a1)/two
}
if (b1>t)
if (b1<smax) {
smax = b1
dif = (b1-a1)/two
}
}
tnt = smax+toler*(one+abs(dif))
if (tnt>=t1+toler)
iend = .true.
t = tnt
if (iend)
t = t1
}
} #1
wa(m2,nn+1) = two
ift = 2
go to 50
40 if (lsol>2) {
sol(1,1) = zero
#sol(2,1) = zero
sol(3,1) = zero
sol(1,lsol) = one
#sol(2,lsol) = zero
sol(3,lsol) = zero
do i = 1,m {
dsol(i,1) = one
dsol(i,lsol) = zero
dsol(i,lsol+1) = zero
}
}
l = kl-1
do i = 1,l
if (wa(i,n1)<zero)
do j = kr,n4
wa(i,j) = -wa(i,j)
50 sum = zero
if(!lci2){
do i = kl,m {
k = wa(i,n4)*sign(one,wa(i,n4))
d = wa(i,n1)*sign(one,wa(i,n4))
sum = sum+d*sign(one,d)*(half+sign(one,d)*(t-half))
k = k-n
e(k) = d
}
wa(m2,n2) = kount
wa(m1,n2) = n1-kr
wa(m1,n1) = sum
}
if (wa(m2,nn+1)==two)
break 1
if (!lci1)
break 1
if (!lci2){
lci2 = .true.
n = nn-1
n1 = n+1
n2 = n+2
n3 = n+3
n4 = n+4
60 idxcf = idxcf+1
if (idxcf>nn){
break 1
}
70 if (lup){
tnew = x(idxcf)+toler
told = tnew
ci(3,idxcf) = x(idxcf)
tnmat(3,idxcf) = zero
}
else{
tnew = x(idxcf)-toler
told = tnew
ci(2,idxcf) = x(idxcf)
tnmat(2,idxcf) = zero
}
}
} #0
# restore the original value of dual when ci is true
do i=1,m
dsol(i,lsol) = dsol(i,lsol+1)
}
return
end

Computing file changes ...