Revision 2b6c53b1504865728a6dfad3e720918a2f89f3a5 authored by Jon Medhurst (Tixy) on 20 August 2014, 12:41:04 UTC, committed by Tomi Valkeinen on 26 August 2014, 09:50:27 UTC
If the device-tree specifies a max-memory-bandwidth property then the
CLCD driver uses that to calculate the bits-per-pixel supported,
however, this calculation is faulty for two reasons.

1. It doesn't ensure that the result is a sane value, i.e. a power of 2
   and <= 32 as the rest of the code assumes.

2. It uses the displayed resolution and calculates the average bandwidth
   across the whole frame. It should instead calculate the peak
   bandwidth based on the pixel clock.

This patch fixes both the above.

Signed-off-by: Jon Medhurst <tixy@linaro.org>
Acked-by: Pawel Moll <pawel.moll@arm.com>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
1 parent 754d561
Raw File
rational.c
/*
 * rational fractions
 *
 * Copyright (C) 2009 emlix GmbH, Oskar Schirmer <oskar@scara.com>
 *
 * helper functions when coping with rational numbers
 */

#include <linux/rational.h>
#include <linux/compiler.h>
#include <linux/export.h>

/*
 * calculate best rational approximation for a given fraction
 * taking into account restricted register size, e.g. to find
 * appropriate values for a pll with 5 bit denominator and
 * 8 bit numerator register fields, trying to set up with a
 * frequency ratio of 3.1415, one would say:
 *
 * rational_best_approximation(31415, 10000,
 *		(1 << 8) - 1, (1 << 5) - 1, &n, &d);
 *
 * you may look at given_numerator as a fixed point number,
 * with the fractional part size described in given_denominator.
 *
 * for theoretical background, see:
 * http://en.wikipedia.org/wiki/Continued_fraction
 */

void rational_best_approximation(
	unsigned long given_numerator, unsigned long given_denominator,
	unsigned long max_numerator, unsigned long max_denominator,
	unsigned long *best_numerator, unsigned long *best_denominator)
{
	unsigned long n, d, n0, d0, n1, d1;
	n = given_numerator;
	d = given_denominator;
	n0 = d1 = 0;
	n1 = d0 = 1;
	for (;;) {
		unsigned long t, a;
		if ((n1 > max_numerator) || (d1 > max_denominator)) {
			n1 = n0;
			d1 = d0;
			break;
		}
		if (d == 0)
			break;
		t = d;
		a = n / d;
		d = n % d;
		n = t;
		t = n0 + a * n1;
		n0 = n1;
		n1 = t;
		t = d0 + a * d1;
		d0 = d1;
		d1 = t;
	}
	*best_numerator = n1;
	*best_denominator = d1;
}

EXPORT_SYMBOL(rational_best_approximation);
back to top