https://github.com/torvalds/linux
Revision 2bbb5fa37475d7aa5fa62f34db1623f3da2dfdfa authored by Hans de Goede on 19 November 2018, 18:06:01 UTC, committed by Rafael J. Wysocki on 21 November 2018, 12:30:13 UTC
Many HP AMD based laptops contain an SMB0001 device like this:

Device (SMBD)
{
    Name (_HID, "SMB0001")  // _HID: Hardware ID
    Name (_CRS, ResourceTemplate ()  // _CRS: Current Resource Settings
    {
        IO (Decode16,
            0x0B20,             // Range Minimum
            0x0B20,             // Range Maximum
            0x20,               // Alignment
            0x20,               // Length
            )
        IRQ (Level, ActiveLow, Shared, )
            {7}
    })
}

The legacy style IRQ resource here causes acpi_dev_get_irqresource() to
be called with legacy=true and this message to show in dmesg:
ACPI: IRQ 7 override to edge, high

This causes issues when later on the AMD0030 GPIO device gets enumerated:

Device (GPIO)
{
    Name (_HID, "AMDI0030")  // _HID: Hardware ID
    Name (_CID, "AMDI0030")  // _CID: Compatible ID
    Name (_UID, Zero)  // _UID: Unique ID
    Method (_CRS, 0, NotSerialized)  // _CRS: Current Resource Settings
    {
	Name (RBUF, ResourceTemplate ()
	{
	    Interrupt (ResourceConsumer, Level, ActiveLow, Shared, ,, )
	    {
		0x00000007,
	    }
	    Memory32Fixed (ReadWrite,
		0xFED81500,         // Address Base
		0x00000400,         // Address Length
		)
	})
	Return (RBUF) /* \_SB_.GPIO._CRS.RBUF */
    }
}

Now acpi_dev_get_irqresource() gets called with legacy=false, but because
of the earlier override of the trigger-type acpi_register_gsi() returns
-EBUSY (because we try to register the same interrupt with a different
trigger-type) and we end up setting IORESOURCE_DISABLED in the flags.

The setting of IORESOURCE_DISABLED causes platform_get_irq() to call
acpi_irq_get() which is not implemented on x86 and returns -EINVAL.
resulting in the following in dmesg:

amd_gpio AMDI0030:00: Failed to get gpio IRQ: -22
amd_gpio: probe of AMDI0030:00 failed with error -22

The SMB0001 is a "virtual" device in the sense that the only way the OS
interacts with it is through calling a couple of methods to do SMBus
transfers. As such it is weird that it has IO and IRQ resources at all,
because the driver for it is not expected to ever access the hardware
directly.

The Linux driver for the SMB0001 device directly binds to the acpi_device
through the acpi_bus, so we do not need to instantiate a platform_device
for this ACPI device. This commit adds the SMB0001 HID to the
forbidden_id_list, avoiding the instantiating of a platform_device for it.
Not instantiating a platform_device means we will no longer call
acpi_dev_get_irqresource() for the legacy IRQ resource fixing the probe of
the AMDI0030 device failing.

BugLink: https://bugzilla.redhat.com/show_bug.cgi?id=1644013
BugLink: https://bugzilla.kernel.org/show_bug.cgi?id=198715
BugLink: https://bugzilla.kernel.org/show_bug.cgi?id=199523
Reported-by: Lukas Kahnert <openproggerfreak@gmail.com>
Tested-by: Marc <suaefar@googlemail.com>
Cc: All applicable <stable@vger.kernel.org>
Signed-off-by: Hans de Goede <hdegoede@redhat.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
1 parent 9ff0119
Raw File
Tip revision: 2bbb5fa37475d7aa5fa62f34db1623f3da2dfdfa authored by Hans de Goede on 19 November 2018, 18:06:01 UTC
ACPI / platform: Add SMB0001 HID to forbidden_id_list
Tip revision: 2bbb5fa
dmapool.c
/*
 * DMA Pool allocator
 *
 * Copyright 2001 David Brownell
 * Copyright 2007 Intel Corporation
 *   Author: Matthew Wilcox <willy@linux.intel.com>
 *
 * This software may be redistributed and/or modified under the terms of
 * the GNU General Public License ("GPL") version 2 as published by the
 * Free Software Foundation.
 *
 * This allocator returns small blocks of a given size which are DMA-able by
 * the given device.  It uses the dma_alloc_coherent page allocator to get
 * new pages, then splits them up into blocks of the required size.
 * Many older drivers still have their own code to do this.
 *
 * The current design of this allocator is fairly simple.  The pool is
 * represented by the 'struct dma_pool' which keeps a doubly-linked list of
 * allocated pages.  Each page in the page_list is split into blocks of at
 * least 'size' bytes.  Free blocks are tracked in an unsorted singly-linked
 * list of free blocks within the page.  Used blocks aren't tracked, but we
 * keep a count of how many are currently allocated from each page.
 */

#include <linux/device.h>
#include <linux/dma-mapping.h>
#include <linux/dmapool.h>
#include <linux/kernel.h>
#include <linux/list.h>
#include <linux/export.h>
#include <linux/mutex.h>
#include <linux/poison.h>
#include <linux/sched.h>
#include <linux/slab.h>
#include <linux/stat.h>
#include <linux/spinlock.h>
#include <linux/string.h>
#include <linux/types.h>
#include <linux/wait.h>

#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_SLUB_DEBUG_ON)
#define DMAPOOL_DEBUG 1
#endif

struct dma_pool {		/* the pool */
	struct list_head page_list;
	spinlock_t lock;
	size_t size;
	struct device *dev;
	size_t allocation;
	size_t boundary;
	char name[32];
	struct list_head pools;
};

struct dma_page {		/* cacheable header for 'allocation' bytes */
	struct list_head page_list;
	void *vaddr;
	dma_addr_t dma;
	unsigned int in_use;
	unsigned int offset;
};

static DEFINE_MUTEX(pools_lock);
static DEFINE_MUTEX(pools_reg_lock);

static ssize_t
show_pools(struct device *dev, struct device_attribute *attr, char *buf)
{
	unsigned temp;
	unsigned size;
	char *next;
	struct dma_page *page;
	struct dma_pool *pool;

	next = buf;
	size = PAGE_SIZE;

	temp = scnprintf(next, size, "poolinfo - 0.1\n");
	size -= temp;
	next += temp;

	mutex_lock(&pools_lock);
	list_for_each_entry(pool, &dev->dma_pools, pools) {
		unsigned pages = 0;
		unsigned blocks = 0;

		spin_lock_irq(&pool->lock);
		list_for_each_entry(page, &pool->page_list, page_list) {
			pages++;
			blocks += page->in_use;
		}
		spin_unlock_irq(&pool->lock);

		/* per-pool info, no real statistics yet */
		temp = scnprintf(next, size, "%-16s %4u %4zu %4zu %2u\n",
				 pool->name, blocks,
				 pages * (pool->allocation / pool->size),
				 pool->size, pages);
		size -= temp;
		next += temp;
	}
	mutex_unlock(&pools_lock);

	return PAGE_SIZE - size;
}

static DEVICE_ATTR(pools, 0444, show_pools, NULL);

/**
 * dma_pool_create - Creates a pool of consistent memory blocks, for dma.
 * @name: name of pool, for diagnostics
 * @dev: device that will be doing the DMA
 * @size: size of the blocks in this pool.
 * @align: alignment requirement for blocks; must be a power of two
 * @boundary: returned blocks won't cross this power of two boundary
 * Context: !in_interrupt()
 *
 * Returns a dma allocation pool with the requested characteristics, or
 * null if one can't be created.  Given one of these pools, dma_pool_alloc()
 * may be used to allocate memory.  Such memory will all have "consistent"
 * DMA mappings, accessible by the device and its driver without using
 * cache flushing primitives.  The actual size of blocks allocated may be
 * larger than requested because of alignment.
 *
 * If @boundary is nonzero, objects returned from dma_pool_alloc() won't
 * cross that size boundary.  This is useful for devices which have
 * addressing restrictions on individual DMA transfers, such as not crossing
 * boundaries of 4KBytes.
 */
struct dma_pool *dma_pool_create(const char *name, struct device *dev,
				 size_t size, size_t align, size_t boundary)
{
	struct dma_pool *retval;
	size_t allocation;
	bool empty = false;

	if (align == 0)
		align = 1;
	else if (align & (align - 1))
		return NULL;

	if (size == 0)
		return NULL;
	else if (size < 4)
		size = 4;

	if ((size % align) != 0)
		size = ALIGN(size, align);

	allocation = max_t(size_t, size, PAGE_SIZE);

	if (!boundary)
		boundary = allocation;
	else if ((boundary < size) || (boundary & (boundary - 1)))
		return NULL;

	retval = kmalloc_node(sizeof(*retval), GFP_KERNEL, dev_to_node(dev));
	if (!retval)
		return retval;

	strlcpy(retval->name, name, sizeof(retval->name));

	retval->dev = dev;

	INIT_LIST_HEAD(&retval->page_list);
	spin_lock_init(&retval->lock);
	retval->size = size;
	retval->boundary = boundary;
	retval->allocation = allocation;

	INIT_LIST_HEAD(&retval->pools);

	/*
	 * pools_lock ensures that the ->dma_pools list does not get corrupted.
	 * pools_reg_lock ensures that there is not a race between
	 * dma_pool_create() and dma_pool_destroy() or within dma_pool_create()
	 * when the first invocation of dma_pool_create() failed on
	 * device_create_file() and the second assumes that it has been done (I
	 * know it is a short window).
	 */
	mutex_lock(&pools_reg_lock);
	mutex_lock(&pools_lock);
	if (list_empty(&dev->dma_pools))
		empty = true;
	list_add(&retval->pools, &dev->dma_pools);
	mutex_unlock(&pools_lock);
	if (empty) {
		int err;

		err = device_create_file(dev, &dev_attr_pools);
		if (err) {
			mutex_lock(&pools_lock);
			list_del(&retval->pools);
			mutex_unlock(&pools_lock);
			mutex_unlock(&pools_reg_lock);
			kfree(retval);
			return NULL;
		}
	}
	mutex_unlock(&pools_reg_lock);
	return retval;
}
EXPORT_SYMBOL(dma_pool_create);

static void pool_initialise_page(struct dma_pool *pool, struct dma_page *page)
{
	unsigned int offset = 0;
	unsigned int next_boundary = pool->boundary;

	do {
		unsigned int next = offset + pool->size;
		if (unlikely((next + pool->size) >= next_boundary)) {
			next = next_boundary;
			next_boundary += pool->boundary;
		}
		*(int *)(page->vaddr + offset) = next;
		offset = next;
	} while (offset < pool->allocation);
}

static struct dma_page *pool_alloc_page(struct dma_pool *pool, gfp_t mem_flags)
{
	struct dma_page *page;

	page = kmalloc(sizeof(*page), mem_flags);
	if (!page)
		return NULL;
	page->vaddr = dma_alloc_coherent(pool->dev, pool->allocation,
					 &page->dma, mem_flags);
	if (page->vaddr) {
#ifdef	DMAPOOL_DEBUG
		memset(page->vaddr, POOL_POISON_FREED, pool->allocation);
#endif
		pool_initialise_page(pool, page);
		page->in_use = 0;
		page->offset = 0;
	} else {
		kfree(page);
		page = NULL;
	}
	return page;
}

static inline bool is_page_busy(struct dma_page *page)
{
	return page->in_use != 0;
}

static void pool_free_page(struct dma_pool *pool, struct dma_page *page)
{
	dma_addr_t dma = page->dma;

#ifdef	DMAPOOL_DEBUG
	memset(page->vaddr, POOL_POISON_FREED, pool->allocation);
#endif
	dma_free_coherent(pool->dev, pool->allocation, page->vaddr, dma);
	list_del(&page->page_list);
	kfree(page);
}

/**
 * dma_pool_destroy - destroys a pool of dma memory blocks.
 * @pool: dma pool that will be destroyed
 * Context: !in_interrupt()
 *
 * Caller guarantees that no more memory from the pool is in use,
 * and that nothing will try to use the pool after this call.
 */
void dma_pool_destroy(struct dma_pool *pool)
{
	bool empty = false;

	if (unlikely(!pool))
		return;

	mutex_lock(&pools_reg_lock);
	mutex_lock(&pools_lock);
	list_del(&pool->pools);
	if (pool->dev && list_empty(&pool->dev->dma_pools))
		empty = true;
	mutex_unlock(&pools_lock);
	if (empty)
		device_remove_file(pool->dev, &dev_attr_pools);
	mutex_unlock(&pools_reg_lock);

	while (!list_empty(&pool->page_list)) {
		struct dma_page *page;
		page = list_entry(pool->page_list.next,
				  struct dma_page, page_list);
		if (is_page_busy(page)) {
			if (pool->dev)
				dev_err(pool->dev,
					"dma_pool_destroy %s, %p busy\n",
					pool->name, page->vaddr);
			else
				pr_err("dma_pool_destroy %s, %p busy\n",
				       pool->name, page->vaddr);
			/* leak the still-in-use consistent memory */
			list_del(&page->page_list);
			kfree(page);
		} else
			pool_free_page(pool, page);
	}

	kfree(pool);
}
EXPORT_SYMBOL(dma_pool_destroy);

/**
 * dma_pool_alloc - get a block of consistent memory
 * @pool: dma pool that will produce the block
 * @mem_flags: GFP_* bitmask
 * @handle: pointer to dma address of block
 *
 * This returns the kernel virtual address of a currently unused block,
 * and reports its dma address through the handle.
 * If such a memory block can't be allocated, %NULL is returned.
 */
void *dma_pool_alloc(struct dma_pool *pool, gfp_t mem_flags,
		     dma_addr_t *handle)
{
	unsigned long flags;
	struct dma_page *page;
	size_t offset;
	void *retval;

	might_sleep_if(gfpflags_allow_blocking(mem_flags));

	spin_lock_irqsave(&pool->lock, flags);
	list_for_each_entry(page, &pool->page_list, page_list) {
		if (page->offset < pool->allocation)
			goto ready;
	}

	/* pool_alloc_page() might sleep, so temporarily drop &pool->lock */
	spin_unlock_irqrestore(&pool->lock, flags);

	page = pool_alloc_page(pool, mem_flags & (~__GFP_ZERO));
	if (!page)
		return NULL;

	spin_lock_irqsave(&pool->lock, flags);

	list_add(&page->page_list, &pool->page_list);
 ready:
	page->in_use++;
	offset = page->offset;
	page->offset = *(int *)(page->vaddr + offset);
	retval = offset + page->vaddr;
	*handle = offset + page->dma;
#ifdef	DMAPOOL_DEBUG
	{
		int i;
		u8 *data = retval;
		/* page->offset is stored in first 4 bytes */
		for (i = sizeof(page->offset); i < pool->size; i++) {
			if (data[i] == POOL_POISON_FREED)
				continue;
			if (pool->dev)
				dev_err(pool->dev,
					"dma_pool_alloc %s, %p (corrupted)\n",
					pool->name, retval);
			else
				pr_err("dma_pool_alloc %s, %p (corrupted)\n",
					pool->name, retval);

			/*
			 * Dump the first 4 bytes even if they are not
			 * POOL_POISON_FREED
			 */
			print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1,
					data, pool->size, 1);
			break;
		}
	}
	if (!(mem_flags & __GFP_ZERO))
		memset(retval, POOL_POISON_ALLOCATED, pool->size);
#endif
	spin_unlock_irqrestore(&pool->lock, flags);

	if (mem_flags & __GFP_ZERO)
		memset(retval, 0, pool->size);

	return retval;
}
EXPORT_SYMBOL(dma_pool_alloc);

static struct dma_page *pool_find_page(struct dma_pool *pool, dma_addr_t dma)
{
	struct dma_page *page;

	list_for_each_entry(page, &pool->page_list, page_list) {
		if (dma < page->dma)
			continue;
		if ((dma - page->dma) < pool->allocation)
			return page;
	}
	return NULL;
}

/**
 * dma_pool_free - put block back into dma pool
 * @pool: the dma pool holding the block
 * @vaddr: virtual address of block
 * @dma: dma address of block
 *
 * Caller promises neither device nor driver will again touch this block
 * unless it is first re-allocated.
 */
void dma_pool_free(struct dma_pool *pool, void *vaddr, dma_addr_t dma)
{
	struct dma_page *page;
	unsigned long flags;
	unsigned int offset;

	spin_lock_irqsave(&pool->lock, flags);
	page = pool_find_page(pool, dma);
	if (!page) {
		spin_unlock_irqrestore(&pool->lock, flags);
		if (pool->dev)
			dev_err(pool->dev,
				"dma_pool_free %s, %p/%lx (bad dma)\n",
				pool->name, vaddr, (unsigned long)dma);
		else
			pr_err("dma_pool_free %s, %p/%lx (bad dma)\n",
			       pool->name, vaddr, (unsigned long)dma);
		return;
	}

	offset = vaddr - page->vaddr;
#ifdef	DMAPOOL_DEBUG
	if ((dma - page->dma) != offset) {
		spin_unlock_irqrestore(&pool->lock, flags);
		if (pool->dev)
			dev_err(pool->dev,
				"dma_pool_free %s, %p (bad vaddr)/%pad\n",
				pool->name, vaddr, &dma);
		else
			pr_err("dma_pool_free %s, %p (bad vaddr)/%pad\n",
			       pool->name, vaddr, &dma);
		return;
	}
	{
		unsigned int chain = page->offset;
		while (chain < pool->allocation) {
			if (chain != offset) {
				chain = *(int *)(page->vaddr + chain);
				continue;
			}
			spin_unlock_irqrestore(&pool->lock, flags);
			if (pool->dev)
				dev_err(pool->dev, "dma_pool_free %s, dma %pad already free\n",
					pool->name, &dma);
			else
				pr_err("dma_pool_free %s, dma %pad already free\n",
				       pool->name, &dma);
			return;
		}
	}
	memset(vaddr, POOL_POISON_FREED, pool->size);
#endif

	page->in_use--;
	*(int *)vaddr = page->offset;
	page->offset = offset;
	/*
	 * Resist a temptation to do
	 *    if (!is_page_busy(page)) pool_free_page(pool, page);
	 * Better have a few empty pages hang around.
	 */
	spin_unlock_irqrestore(&pool->lock, flags);
}
EXPORT_SYMBOL(dma_pool_free);

/*
 * Managed DMA pool
 */
static void dmam_pool_release(struct device *dev, void *res)
{
	struct dma_pool *pool = *(struct dma_pool **)res;

	dma_pool_destroy(pool);
}

static int dmam_pool_match(struct device *dev, void *res, void *match_data)
{
	return *(struct dma_pool **)res == match_data;
}

/**
 * dmam_pool_create - Managed dma_pool_create()
 * @name: name of pool, for diagnostics
 * @dev: device that will be doing the DMA
 * @size: size of the blocks in this pool.
 * @align: alignment requirement for blocks; must be a power of two
 * @allocation: returned blocks won't cross this boundary (or zero)
 *
 * Managed dma_pool_create().  DMA pool created with this function is
 * automatically destroyed on driver detach.
 */
struct dma_pool *dmam_pool_create(const char *name, struct device *dev,
				  size_t size, size_t align, size_t allocation)
{
	struct dma_pool **ptr, *pool;

	ptr = devres_alloc(dmam_pool_release, sizeof(*ptr), GFP_KERNEL);
	if (!ptr)
		return NULL;

	pool = *ptr = dma_pool_create(name, dev, size, align, allocation);
	if (pool)
		devres_add(dev, ptr);
	else
		devres_free(ptr);

	return pool;
}
EXPORT_SYMBOL(dmam_pool_create);

/**
 * dmam_pool_destroy - Managed dma_pool_destroy()
 * @pool: dma pool that will be destroyed
 *
 * Managed dma_pool_destroy().
 */
void dmam_pool_destroy(struct dma_pool *pool)
{
	struct device *dev = pool->dev;

	WARN_ON(devres_release(dev, dmam_pool_release, dmam_pool_match, pool));
}
EXPORT_SYMBOL(dmam_pool_destroy);
back to top