https://github.com/torvalds/linux
Revision 2bbb5fa37475d7aa5fa62f34db1623f3da2dfdfa authored by Hans de Goede on 19 November 2018, 18:06:01 UTC, committed by Rafael J. Wysocki on 21 November 2018, 12:30:13 UTC
Many HP AMD based laptops contain an SMB0001 device like this:

Device (SMBD)
{
    Name (_HID, "SMB0001")  // _HID: Hardware ID
    Name (_CRS, ResourceTemplate ()  // _CRS: Current Resource Settings
    {
        IO (Decode16,
            0x0B20,             // Range Minimum
            0x0B20,             // Range Maximum
            0x20,               // Alignment
            0x20,               // Length
            )
        IRQ (Level, ActiveLow, Shared, )
            {7}
    })
}

The legacy style IRQ resource here causes acpi_dev_get_irqresource() to
be called with legacy=true and this message to show in dmesg:
ACPI: IRQ 7 override to edge, high

This causes issues when later on the AMD0030 GPIO device gets enumerated:

Device (GPIO)
{
    Name (_HID, "AMDI0030")  // _HID: Hardware ID
    Name (_CID, "AMDI0030")  // _CID: Compatible ID
    Name (_UID, Zero)  // _UID: Unique ID
    Method (_CRS, 0, NotSerialized)  // _CRS: Current Resource Settings
    {
	Name (RBUF, ResourceTemplate ()
	{
	    Interrupt (ResourceConsumer, Level, ActiveLow, Shared, ,, )
	    {
		0x00000007,
	    }
	    Memory32Fixed (ReadWrite,
		0xFED81500,         // Address Base
		0x00000400,         // Address Length
		)
	})
	Return (RBUF) /* \_SB_.GPIO._CRS.RBUF */
    }
}

Now acpi_dev_get_irqresource() gets called with legacy=false, but because
of the earlier override of the trigger-type acpi_register_gsi() returns
-EBUSY (because we try to register the same interrupt with a different
trigger-type) and we end up setting IORESOURCE_DISABLED in the flags.

The setting of IORESOURCE_DISABLED causes platform_get_irq() to call
acpi_irq_get() which is not implemented on x86 and returns -EINVAL.
resulting in the following in dmesg:

amd_gpio AMDI0030:00: Failed to get gpio IRQ: -22
amd_gpio: probe of AMDI0030:00 failed with error -22

The SMB0001 is a "virtual" device in the sense that the only way the OS
interacts with it is through calling a couple of methods to do SMBus
transfers. As such it is weird that it has IO and IRQ resources at all,
because the driver for it is not expected to ever access the hardware
directly.

The Linux driver for the SMB0001 device directly binds to the acpi_device
through the acpi_bus, so we do not need to instantiate a platform_device
for this ACPI device. This commit adds the SMB0001 HID to the
forbidden_id_list, avoiding the instantiating of a platform_device for it.
Not instantiating a platform_device means we will no longer call
acpi_dev_get_irqresource() for the legacy IRQ resource fixing the probe of
the AMDI0030 device failing.

BugLink: https://bugzilla.redhat.com/show_bug.cgi?id=1644013
BugLink: https://bugzilla.kernel.org/show_bug.cgi?id=198715
BugLink: https://bugzilla.kernel.org/show_bug.cgi?id=199523
Reported-by: Lukas Kahnert <openproggerfreak@gmail.com>
Tested-by: Marc <suaefar@googlemail.com>
Cc: All applicable <stable@vger.kernel.org>
Signed-off-by: Hans de Goede <hdegoede@redhat.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
1 parent 9ff0119
Raw File
Tip revision: 2bbb5fa37475d7aa5fa62f34db1623f3da2dfdfa authored by Hans de Goede on 19 November 2018, 18:06:01 UTC
ACPI / platform: Add SMB0001 HID to forbidden_id_list
Tip revision: 2bbb5fa
slab.h
/* SPDX-License-Identifier: GPL-2.0 */
#ifndef MM_SLAB_H
#define MM_SLAB_H
/*
 * Internal slab definitions
 */

#ifdef CONFIG_SLOB
/*
 * Common fields provided in kmem_cache by all slab allocators
 * This struct is either used directly by the allocator (SLOB)
 * or the allocator must include definitions for all fields
 * provided in kmem_cache_common in their definition of kmem_cache.
 *
 * Once we can do anonymous structs (C11 standard) we could put a
 * anonymous struct definition in these allocators so that the
 * separate allocations in the kmem_cache structure of SLAB and
 * SLUB is no longer needed.
 */
struct kmem_cache {
	unsigned int object_size;/* The original size of the object */
	unsigned int size;	/* The aligned/padded/added on size  */
	unsigned int align;	/* Alignment as calculated */
	slab_flags_t flags;	/* Active flags on the slab */
	unsigned int useroffset;/* Usercopy region offset */
	unsigned int usersize;	/* Usercopy region size */
	const char *name;	/* Slab name for sysfs */
	int refcount;		/* Use counter */
	void (*ctor)(void *);	/* Called on object slot creation */
	struct list_head list;	/* List of all slab caches on the system */
};

#endif /* CONFIG_SLOB */

#ifdef CONFIG_SLAB
#include <linux/slab_def.h>
#endif

#ifdef CONFIG_SLUB
#include <linux/slub_def.h>
#endif

#include <linux/memcontrol.h>
#include <linux/fault-inject.h>
#include <linux/kasan.h>
#include <linux/kmemleak.h>
#include <linux/random.h>
#include <linux/sched/mm.h>

/*
 * State of the slab allocator.
 *
 * This is used to describe the states of the allocator during bootup.
 * Allocators use this to gradually bootstrap themselves. Most allocators
 * have the problem that the structures used for managing slab caches are
 * allocated from slab caches themselves.
 */
enum slab_state {
	DOWN,			/* No slab functionality yet */
	PARTIAL,		/* SLUB: kmem_cache_node available */
	PARTIAL_NODE,		/* SLAB: kmalloc size for node struct available */
	UP,			/* Slab caches usable but not all extras yet */
	FULL			/* Everything is working */
};

extern enum slab_state slab_state;

/* The slab cache mutex protects the management structures during changes */
extern struct mutex slab_mutex;

/* The list of all slab caches on the system */
extern struct list_head slab_caches;

/* The slab cache that manages slab cache information */
extern struct kmem_cache *kmem_cache;

/* A table of kmalloc cache names and sizes */
extern const struct kmalloc_info_struct {
	const char *name;
	unsigned int size;
} kmalloc_info[];

#ifndef CONFIG_SLOB
/* Kmalloc array related functions */
void setup_kmalloc_cache_index_table(void);
void create_kmalloc_caches(slab_flags_t);

/* Find the kmalloc slab corresponding for a certain size */
struct kmem_cache *kmalloc_slab(size_t, gfp_t);
#endif


/* Functions provided by the slab allocators */
int __kmem_cache_create(struct kmem_cache *, slab_flags_t flags);

struct kmem_cache *create_kmalloc_cache(const char *name, unsigned int size,
			slab_flags_t flags, unsigned int useroffset,
			unsigned int usersize);
extern void create_boot_cache(struct kmem_cache *, const char *name,
			unsigned int size, slab_flags_t flags,
			unsigned int useroffset, unsigned int usersize);

int slab_unmergeable(struct kmem_cache *s);
struct kmem_cache *find_mergeable(unsigned size, unsigned align,
		slab_flags_t flags, const char *name, void (*ctor)(void *));
#ifndef CONFIG_SLOB
struct kmem_cache *
__kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
		   slab_flags_t flags, void (*ctor)(void *));

slab_flags_t kmem_cache_flags(unsigned int object_size,
	slab_flags_t flags, const char *name,
	void (*ctor)(void *));
#else
static inline struct kmem_cache *
__kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
		   slab_flags_t flags, void (*ctor)(void *))
{ return NULL; }

static inline slab_flags_t kmem_cache_flags(unsigned int object_size,
	slab_flags_t flags, const char *name,
	void (*ctor)(void *))
{
	return flags;
}
#endif


/* Legal flag mask for kmem_cache_create(), for various configurations */
#define SLAB_CORE_FLAGS (SLAB_HWCACHE_ALIGN | SLAB_CACHE_DMA | SLAB_PANIC | \
			 SLAB_TYPESAFE_BY_RCU | SLAB_DEBUG_OBJECTS )

#if defined(CONFIG_DEBUG_SLAB)
#define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
#elif defined(CONFIG_SLUB_DEBUG)
#define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
			  SLAB_TRACE | SLAB_CONSISTENCY_CHECKS)
#else
#define SLAB_DEBUG_FLAGS (0)
#endif

#if defined(CONFIG_SLAB)
#define SLAB_CACHE_FLAGS (SLAB_MEM_SPREAD | SLAB_NOLEAKTRACE | \
			  SLAB_RECLAIM_ACCOUNT | SLAB_TEMPORARY | \
			  SLAB_ACCOUNT)
#elif defined(CONFIG_SLUB)
#define SLAB_CACHE_FLAGS (SLAB_NOLEAKTRACE | SLAB_RECLAIM_ACCOUNT | \
			  SLAB_TEMPORARY | SLAB_ACCOUNT)
#else
#define SLAB_CACHE_FLAGS (0)
#endif

/* Common flags available with current configuration */
#define CACHE_CREATE_MASK (SLAB_CORE_FLAGS | SLAB_DEBUG_FLAGS | SLAB_CACHE_FLAGS)

/* Common flags permitted for kmem_cache_create */
#define SLAB_FLAGS_PERMITTED (SLAB_CORE_FLAGS | \
			      SLAB_RED_ZONE | \
			      SLAB_POISON | \
			      SLAB_STORE_USER | \
			      SLAB_TRACE | \
			      SLAB_CONSISTENCY_CHECKS | \
			      SLAB_MEM_SPREAD | \
			      SLAB_NOLEAKTRACE | \
			      SLAB_RECLAIM_ACCOUNT | \
			      SLAB_TEMPORARY | \
			      SLAB_ACCOUNT)

bool __kmem_cache_empty(struct kmem_cache *);
int __kmem_cache_shutdown(struct kmem_cache *);
void __kmem_cache_release(struct kmem_cache *);
int __kmem_cache_shrink(struct kmem_cache *);
void __kmemcg_cache_deactivate(struct kmem_cache *s);
void slab_kmem_cache_release(struct kmem_cache *);

struct seq_file;
struct file;

struct slabinfo {
	unsigned long active_objs;
	unsigned long num_objs;
	unsigned long active_slabs;
	unsigned long num_slabs;
	unsigned long shared_avail;
	unsigned int limit;
	unsigned int batchcount;
	unsigned int shared;
	unsigned int objects_per_slab;
	unsigned int cache_order;
};

void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo);
void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s);
ssize_t slabinfo_write(struct file *file, const char __user *buffer,
		       size_t count, loff_t *ppos);

/*
 * Generic implementation of bulk operations
 * These are useful for situations in which the allocator cannot
 * perform optimizations. In that case segments of the object listed
 * may be allocated or freed using these operations.
 */
void __kmem_cache_free_bulk(struct kmem_cache *, size_t, void **);
int __kmem_cache_alloc_bulk(struct kmem_cache *, gfp_t, size_t, void **);

#ifdef CONFIG_MEMCG_KMEM

/* List of all root caches. */
extern struct list_head		slab_root_caches;
#define root_caches_node	memcg_params.__root_caches_node

/*
 * Iterate over all memcg caches of the given root cache. The caller must hold
 * slab_mutex.
 */
#define for_each_memcg_cache(iter, root) \
	list_for_each_entry(iter, &(root)->memcg_params.children, \
			    memcg_params.children_node)

static inline bool is_root_cache(struct kmem_cache *s)
{
	return !s->memcg_params.root_cache;
}

static inline bool slab_equal_or_root(struct kmem_cache *s,
				      struct kmem_cache *p)
{
	return p == s || p == s->memcg_params.root_cache;
}

/*
 * We use suffixes to the name in memcg because we can't have caches
 * created in the system with the same name. But when we print them
 * locally, better refer to them with the base name
 */
static inline const char *cache_name(struct kmem_cache *s)
{
	if (!is_root_cache(s))
		s = s->memcg_params.root_cache;
	return s->name;
}

/*
 * Note, we protect with RCU only the memcg_caches array, not per-memcg caches.
 * That said the caller must assure the memcg's cache won't go away by either
 * taking a css reference to the owner cgroup, or holding the slab_mutex.
 */
static inline struct kmem_cache *
cache_from_memcg_idx(struct kmem_cache *s, int idx)
{
	struct kmem_cache *cachep;
	struct memcg_cache_array *arr;

	rcu_read_lock();
	arr = rcu_dereference(s->memcg_params.memcg_caches);

	/*
	 * Make sure we will access the up-to-date value. The code updating
	 * memcg_caches issues a write barrier to match this (see
	 * memcg_create_kmem_cache()).
	 */
	cachep = READ_ONCE(arr->entries[idx]);
	rcu_read_unlock();

	return cachep;
}

static inline struct kmem_cache *memcg_root_cache(struct kmem_cache *s)
{
	if (is_root_cache(s))
		return s;
	return s->memcg_params.root_cache;
}

static __always_inline int memcg_charge_slab(struct page *page,
					     gfp_t gfp, int order,
					     struct kmem_cache *s)
{
	if (!memcg_kmem_enabled())
		return 0;
	if (is_root_cache(s))
		return 0;
	return memcg_kmem_charge_memcg(page, gfp, order, s->memcg_params.memcg);
}

static __always_inline void memcg_uncharge_slab(struct page *page, int order,
						struct kmem_cache *s)
{
	if (!memcg_kmem_enabled())
		return;
	memcg_kmem_uncharge(page, order);
}

extern void slab_init_memcg_params(struct kmem_cache *);
extern void memcg_link_cache(struct kmem_cache *s);
extern void slab_deactivate_memcg_cache_rcu_sched(struct kmem_cache *s,
				void (*deact_fn)(struct kmem_cache *));

#else /* CONFIG_MEMCG_KMEM */

/* If !memcg, all caches are root. */
#define slab_root_caches	slab_caches
#define root_caches_node	list

#define for_each_memcg_cache(iter, root) \
	for ((void)(iter), (void)(root); 0; )

static inline bool is_root_cache(struct kmem_cache *s)
{
	return true;
}

static inline bool slab_equal_or_root(struct kmem_cache *s,
				      struct kmem_cache *p)
{
	return true;
}

static inline const char *cache_name(struct kmem_cache *s)
{
	return s->name;
}

static inline struct kmem_cache *
cache_from_memcg_idx(struct kmem_cache *s, int idx)
{
	return NULL;
}

static inline struct kmem_cache *memcg_root_cache(struct kmem_cache *s)
{
	return s;
}

static inline int memcg_charge_slab(struct page *page, gfp_t gfp, int order,
				    struct kmem_cache *s)
{
	return 0;
}

static inline void memcg_uncharge_slab(struct page *page, int order,
				       struct kmem_cache *s)
{
}

static inline void slab_init_memcg_params(struct kmem_cache *s)
{
}

static inline void memcg_link_cache(struct kmem_cache *s)
{
}

#endif /* CONFIG_MEMCG_KMEM */

static inline struct kmem_cache *cache_from_obj(struct kmem_cache *s, void *x)
{
	struct kmem_cache *cachep;
	struct page *page;

	/*
	 * When kmemcg is not being used, both assignments should return the
	 * same value. but we don't want to pay the assignment price in that
	 * case. If it is not compiled in, the compiler should be smart enough
	 * to not do even the assignment. In that case, slab_equal_or_root
	 * will also be a constant.
	 */
	if (!memcg_kmem_enabled() &&
	    !unlikely(s->flags & SLAB_CONSISTENCY_CHECKS))
		return s;

	page = virt_to_head_page(x);
	cachep = page->slab_cache;
	if (slab_equal_or_root(cachep, s))
		return cachep;

	pr_err("%s: Wrong slab cache. %s but object is from %s\n",
	       __func__, s->name, cachep->name);
	WARN_ON_ONCE(1);
	return s;
}

static inline size_t slab_ksize(const struct kmem_cache *s)
{
#ifndef CONFIG_SLUB
	return s->object_size;

#else /* CONFIG_SLUB */
# ifdef CONFIG_SLUB_DEBUG
	/*
	 * Debugging requires use of the padding between object
	 * and whatever may come after it.
	 */
	if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
		return s->object_size;
# endif
	if (s->flags & SLAB_KASAN)
		return s->object_size;
	/*
	 * If we have the need to store the freelist pointer
	 * back there or track user information then we can
	 * only use the space before that information.
	 */
	if (s->flags & (SLAB_TYPESAFE_BY_RCU | SLAB_STORE_USER))
		return s->inuse;
	/*
	 * Else we can use all the padding etc for the allocation
	 */
	return s->size;
#endif
}

static inline struct kmem_cache *slab_pre_alloc_hook(struct kmem_cache *s,
						     gfp_t flags)
{
	flags &= gfp_allowed_mask;

	fs_reclaim_acquire(flags);
	fs_reclaim_release(flags);

	might_sleep_if(gfpflags_allow_blocking(flags));

	if (should_failslab(s, flags))
		return NULL;

	if (memcg_kmem_enabled() &&
	    ((flags & __GFP_ACCOUNT) || (s->flags & SLAB_ACCOUNT)))
		return memcg_kmem_get_cache(s);

	return s;
}

static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags,
					size_t size, void **p)
{
	size_t i;

	flags &= gfp_allowed_mask;
	for (i = 0; i < size; i++) {
		void *object = p[i];

		kmemleak_alloc_recursive(object, s->object_size, 1,
					 s->flags, flags);
		kasan_slab_alloc(s, object, flags);
	}

	if (memcg_kmem_enabled())
		memcg_kmem_put_cache(s);
}

#ifndef CONFIG_SLOB
/*
 * The slab lists for all objects.
 */
struct kmem_cache_node {
	spinlock_t list_lock;

#ifdef CONFIG_SLAB
	struct list_head slabs_partial;	/* partial list first, better asm code */
	struct list_head slabs_full;
	struct list_head slabs_free;
	unsigned long total_slabs;	/* length of all slab lists */
	unsigned long free_slabs;	/* length of free slab list only */
	unsigned long free_objects;
	unsigned int free_limit;
	unsigned int colour_next;	/* Per-node cache coloring */
	struct array_cache *shared;	/* shared per node */
	struct alien_cache **alien;	/* on other nodes */
	unsigned long next_reap;	/* updated without locking */
	int free_touched;		/* updated without locking */
#endif

#ifdef CONFIG_SLUB
	unsigned long nr_partial;
	struct list_head partial;
#ifdef CONFIG_SLUB_DEBUG
	atomic_long_t nr_slabs;
	atomic_long_t total_objects;
	struct list_head full;
#endif
#endif

};

static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
{
	return s->node[node];
}

/*
 * Iterator over all nodes. The body will be executed for each node that has
 * a kmem_cache_node structure allocated (which is true for all online nodes)
 */
#define for_each_kmem_cache_node(__s, __node, __n) \
	for (__node = 0; __node < nr_node_ids; __node++) \
		 if ((__n = get_node(__s, __node)))

#endif

void *slab_start(struct seq_file *m, loff_t *pos);
void *slab_next(struct seq_file *m, void *p, loff_t *pos);
void slab_stop(struct seq_file *m, void *p);
void *memcg_slab_start(struct seq_file *m, loff_t *pos);
void *memcg_slab_next(struct seq_file *m, void *p, loff_t *pos);
void memcg_slab_stop(struct seq_file *m, void *p);
int memcg_slab_show(struct seq_file *m, void *p);

#if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
void dump_unreclaimable_slab(void);
#else
static inline void dump_unreclaimable_slab(void)
{
}
#endif

void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr);

#ifdef CONFIG_SLAB_FREELIST_RANDOM
int cache_random_seq_create(struct kmem_cache *cachep, unsigned int count,
			gfp_t gfp);
void cache_random_seq_destroy(struct kmem_cache *cachep);
#else
static inline int cache_random_seq_create(struct kmem_cache *cachep,
					unsigned int count, gfp_t gfp)
{
	return 0;
}
static inline void cache_random_seq_destroy(struct kmem_cache *cachep) { }
#endif /* CONFIG_SLAB_FREELIST_RANDOM */

#endif /* MM_SLAB_H */
back to top