Revision 2bbd00aef0671bfe3c2ca5ba67097246257de125 authored by Johannes Weiner on 26 February 2021, 01:16:47 UTC, committed by Linus Torvalds on 26 February 2021, 17:41:00 UTC
On NOHZ, the periodic vmstat flushers on each CPU can go to sleep and
won't wake up until stat changes are detected in the per-cpu deltas of the
zone vmstat counters.

In commit 75ef71840539 ("mm, vmstat: add infrastructure for per-node
vmstats") per-node counters were introduced, and subsequently most stats
were moved from the zone to the node level.  However, the node counters
weren't added to the NOHZ wakeup detection.

In theory this can cause per-cpu errors to remain in the user-reported
stats indefinitely.  In practice this only affects a handful of sub
counters (file_mapped, dirty and writeback e.g.) because other page state
changes at the node level likely involve a change at the zone level as
well (alloc and free, lru ops).  Also, nobody has complained.

Fix it up for completeness: wake up vmstat refreshing on node changes.
Also remove the BUILD_BUG_ONs that assert counter size; we haven't relied
on it since we added sizeof() to the range calculation in commit
13c9aaf7fa01 ("mm/vmstat.c: fix NUMA statistics updates").

Link: https://lkml.kernel.org/r/20210202184342.118513-1-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
1 parent a052d4d
Raw File
raid10.h
/* SPDX-License-Identifier: GPL-2.0 */
#ifndef _RAID10_H
#define _RAID10_H

/* Note: raid10_info.rdev can be set to NULL asynchronously by
 * raid10_remove_disk.
 * There are three safe ways to access raid10_info.rdev.
 * 1/ when holding mddev->reconfig_mutex
 * 2/ when resync/recovery/reshape is known to be happening - i.e. in code
 *    that is called as part of performing resync/recovery/reshape.
 * 3/ while holding rcu_read_lock(), use rcu_dereference to get the pointer
 *    and if it is non-NULL, increment rdev->nr_pending before dropping the
 *    RCU lock.
 * When .rdev is set to NULL, the nr_pending count checked again and if it has
 * been incremented, the pointer is put back in .rdev.
 */

struct raid10_info {
	struct md_rdev	*rdev, *replacement;
	sector_t	head_position;
	int		recovery_disabled;	/* matches
						 * mddev->recovery_disabled
						 * when we shouldn't try
						 * recovering this device.
						 */
};

struct r10conf {
	struct mddev		*mddev;
	struct raid10_info	*mirrors;
	struct raid10_info	*mirrors_new, *mirrors_old;
	spinlock_t		device_lock;

	/* geometry */
	struct geom {
		int		raid_disks;
		int		near_copies;  /* number of copies laid out
					       * raid0 style */
		int		far_copies;   /* number of copies laid out
					       * at large strides across drives
					       */
		int		far_offset;   /* far_copies are offset by 1
					       * stripe instead of many
					       */
		sector_t	stride;	      /* distance between far copies.
					       * This is size / far_copies unless
					       * far_offset, in which case it is
					       * 1 stripe.
					       */
		int             far_set_size; /* The number of devices in a set,
					       * where a 'set' are devices that
					       * contain far/offset copies of
					       * each other.
					       */
		int		chunk_shift; /* shift from chunks to sectors */
		sector_t	chunk_mask;
	} prev, geo;
	int			copies;	      /* near_copies * far_copies.
					       * must be <= raid_disks
					       */

	sector_t		dev_sectors;  /* temp copy of
					       * mddev->dev_sectors */
	sector_t		reshape_progress;
	sector_t		reshape_safe;
	unsigned long		reshape_checkpoint;
	sector_t		offset_diff;

	struct list_head	retry_list;
	/* A separate list of r1bio which just need raid_end_bio_io called.
	 * This mustn't happen for writes which had any errors if the superblock
	 * needs to be written.
	 */
	struct list_head	bio_end_io_list;

	/* queue pending writes and submit them on unplug */
	struct bio_list		pending_bio_list;
	int			pending_count;

	spinlock_t		resync_lock;
	atomic_t		nr_pending;
	int			nr_waiting;
	int			nr_queued;
	int			barrier;
	int			array_freeze_pending;
	sector_t		next_resync;
	int			fullsync;  /* set to 1 if a full sync is needed,
					    * (fresh device added).
					    * Cleared when a sync completes.
					    */
	int			have_replacement; /* There is at least one
						   * replacement device.
						   */
	wait_queue_head_t	wait_barrier;

	mempool_t		r10bio_pool;
	mempool_t		r10buf_pool;
	struct page		*tmppage;
	struct bio_set		bio_split;

	/* When taking over an array from a different personality, we store
	 * the new thread here until we fully activate the array.
	 */
	struct md_thread	*thread;

	/*
	 * Keep track of cluster resync window to send to other nodes.
	 */
	sector_t		cluster_sync_low;
	sector_t		cluster_sync_high;
};

/*
 * this is our 'private' RAID10 bio.
 *
 * it contains information about what kind of IO operations were started
 * for this RAID10 operation, and about their status:
 */

struct r10bio {
	atomic_t		remaining; /* 'have we finished' count,
					    * used from IRQ handlers
					    */
	sector_t		sector;	/* virtual sector number */
	int			sectors;
	unsigned long		state;
	struct mddev		*mddev;
	/*
	 * original bio going to /dev/mdx
	 */
	struct bio		*master_bio;
	/*
	 * if the IO is in READ direction, then this is where we read
	 */
	int			read_slot;

	struct list_head	retry_list;
	/*
	 * if the IO is in WRITE direction, then multiple bios are used,
	 * one for each copy.
	 * When resyncing we also use one for each copy.
	 * When reconstructing, we use 2 bios, one for read, one for write.
	 * We choose the number when they are allocated.
	 * We sometimes need an extra bio to write to the replacement.
	 */
	struct r10dev {
		struct bio	*bio;
		union {
			struct bio	*repl_bio; /* used for resync and
						    * writes */
			struct md_rdev	*rdev;	   /* used for reads
						    * (read_slot >= 0) */
		};
		sector_t	addr;
		int		devnum;
	} devs[];
};

/* bits for r10bio.state */
enum r10bio_state {
	R10BIO_Uptodate,
	R10BIO_IsSync,
	R10BIO_IsRecover,
	R10BIO_IsReshape,
	R10BIO_Degraded,
/* Set ReadError on bios that experience a read error
 * so that raid10d knows what to do with them.
 */
	R10BIO_ReadError,
/* If a write for this request means we can clear some
 * known-bad-block records, we set this flag.
 */
	R10BIO_MadeGood,
	R10BIO_WriteError,
/* During a reshape we might be performing IO on the
 * 'previous' part of the array, in which case this
 * flag is set
 */
	R10BIO_Previous,
/* failfast devices did receive failfast requests. */
	R10BIO_FailFast,
};
#endif
back to top