Revision 2f8619846755176a6720c71d580ffd09394a74bc authored by Mian Yousaf Kaukab on 29 June 2021, 15:06:43 UTC, committed by Alexandre Belloni on 10 July 2021, 00:58:31 UTC
commit 03623b4b041c ("rtc: pcf2127: add tamper detection support")
added support for timestamp interrupts. However they are not being
handled in the irq handler. If a timestamp interrupt occurs it
results in kernel disabling the interrupt and displaying the call
trace:

[  121.145580] irq 78: nobody cared (try booting with the "irqpoll" option)
...
[  121.238087] [<00000000c4d69393>] irq_default_primary_handler threaded [<000000000a90d25b>] pcf2127_rtc_irq [rtc_pcf2127]
[  121.248971] Disabling IRQ #78

Handle timestamp interrupts in pcf2127_rtc_irq(). Save time stamp
before clearing TSF1 and TSF2 flags so that it can't be overwritten.
Set a flag to mark if the timestamp is valid and only report to sysfs
if the flag is set. To mimic the hardware behavior, don’t save
another timestamp until the first one has been read by the userspace.

However, if the alarm irq is not configured, keep the old way of
handling timestamp interrupt in the timestamp0 sysfs calls.

Signed-off-by: Mian Yousaf Kaukab <ykaukab@suse.de>
Reviewed-by: Bruno Thomsen <bruno.thomsen@gmail.com>
Tested-by: Bruno Thomsen <bruno.thomsen@gmail.com>
Signed-off-by: Alexandre Belloni <alexandre.belloni@bootlin.com>
Link: https://lore.kernel.org/r/20210629150643.31551-1-ykaukab@suse.de
1 parent 37aadf9
Raw File
xcbc.c
// SPDX-License-Identifier: GPL-2.0-or-later
/*
 * Copyright (C)2006 USAGI/WIDE Project
 *
 * Author:
 * 	Kazunori Miyazawa <miyazawa@linux-ipv6.org>
 */

#include <crypto/internal/cipher.h>
#include <crypto/internal/hash.h>
#include <linux/err.h>
#include <linux/kernel.h>
#include <linux/module.h>

static u_int32_t ks[12] = {0x01010101, 0x01010101, 0x01010101, 0x01010101,
			   0x02020202, 0x02020202, 0x02020202, 0x02020202,
			   0x03030303, 0x03030303, 0x03030303, 0x03030303};

/*
 * +------------------------
 * | <parent tfm>
 * +------------------------
 * | xcbc_tfm_ctx
 * +------------------------
 * | consts (block size * 2)
 * +------------------------
 */
struct xcbc_tfm_ctx {
	struct crypto_cipher *child;
	u8 ctx[];
};

/*
 * +------------------------
 * | <shash desc>
 * +------------------------
 * | xcbc_desc_ctx
 * +------------------------
 * | odds (block size)
 * +------------------------
 * | prev (block size)
 * +------------------------
 */
struct xcbc_desc_ctx {
	unsigned int len;
	u8 ctx[];
};

#define XCBC_BLOCKSIZE	16

static int crypto_xcbc_digest_setkey(struct crypto_shash *parent,
				     const u8 *inkey, unsigned int keylen)
{
	unsigned long alignmask = crypto_shash_alignmask(parent);
	struct xcbc_tfm_ctx *ctx = crypto_shash_ctx(parent);
	u8 *consts = PTR_ALIGN(&ctx->ctx[0], alignmask + 1);
	int err = 0;
	u8 key1[XCBC_BLOCKSIZE];
	int bs = sizeof(key1);

	if ((err = crypto_cipher_setkey(ctx->child, inkey, keylen)))
		return err;

	crypto_cipher_encrypt_one(ctx->child, consts, (u8 *)ks + bs);
	crypto_cipher_encrypt_one(ctx->child, consts + bs, (u8 *)ks + bs * 2);
	crypto_cipher_encrypt_one(ctx->child, key1, (u8 *)ks);

	return crypto_cipher_setkey(ctx->child, key1, bs);

}

static int crypto_xcbc_digest_init(struct shash_desc *pdesc)
{
	unsigned long alignmask = crypto_shash_alignmask(pdesc->tfm);
	struct xcbc_desc_ctx *ctx = shash_desc_ctx(pdesc);
	int bs = crypto_shash_blocksize(pdesc->tfm);
	u8 *prev = PTR_ALIGN(&ctx->ctx[0], alignmask + 1) + bs;

	ctx->len = 0;
	memset(prev, 0, bs);

	return 0;
}

static int crypto_xcbc_digest_update(struct shash_desc *pdesc, const u8 *p,
				     unsigned int len)
{
	struct crypto_shash *parent = pdesc->tfm;
	unsigned long alignmask = crypto_shash_alignmask(parent);
	struct xcbc_tfm_ctx *tctx = crypto_shash_ctx(parent);
	struct xcbc_desc_ctx *ctx = shash_desc_ctx(pdesc);
	struct crypto_cipher *tfm = tctx->child;
	int bs = crypto_shash_blocksize(parent);
	u8 *odds = PTR_ALIGN(&ctx->ctx[0], alignmask + 1);
	u8 *prev = odds + bs;

	/* checking the data can fill the block */
	if ((ctx->len + len) <= bs) {
		memcpy(odds + ctx->len, p, len);
		ctx->len += len;
		return 0;
	}

	/* filling odds with new data and encrypting it */
	memcpy(odds + ctx->len, p, bs - ctx->len);
	len -= bs - ctx->len;
	p += bs - ctx->len;

	crypto_xor(prev, odds, bs);
	crypto_cipher_encrypt_one(tfm, prev, prev);

	/* clearing the length */
	ctx->len = 0;

	/* encrypting the rest of data */
	while (len > bs) {
		crypto_xor(prev, p, bs);
		crypto_cipher_encrypt_one(tfm, prev, prev);
		p += bs;
		len -= bs;
	}

	/* keeping the surplus of blocksize */
	if (len) {
		memcpy(odds, p, len);
		ctx->len = len;
	}

	return 0;
}

static int crypto_xcbc_digest_final(struct shash_desc *pdesc, u8 *out)
{
	struct crypto_shash *parent = pdesc->tfm;
	unsigned long alignmask = crypto_shash_alignmask(parent);
	struct xcbc_tfm_ctx *tctx = crypto_shash_ctx(parent);
	struct xcbc_desc_ctx *ctx = shash_desc_ctx(pdesc);
	struct crypto_cipher *tfm = tctx->child;
	int bs = crypto_shash_blocksize(parent);
	u8 *consts = PTR_ALIGN(&tctx->ctx[0], alignmask + 1);
	u8 *odds = PTR_ALIGN(&ctx->ctx[0], alignmask + 1);
	u8 *prev = odds + bs;
	unsigned int offset = 0;

	if (ctx->len != bs) {
		unsigned int rlen;
		u8 *p = odds + ctx->len;

		*p = 0x80;
		p++;

		rlen = bs - ctx->len -1;
		if (rlen)
			memset(p, 0, rlen);

		offset += bs;
	}

	crypto_xor(prev, odds, bs);
	crypto_xor(prev, consts + offset, bs);

	crypto_cipher_encrypt_one(tfm, out, prev);

	return 0;
}

static int xcbc_init_tfm(struct crypto_tfm *tfm)
{
	struct crypto_cipher *cipher;
	struct crypto_instance *inst = (void *)tfm->__crt_alg;
	struct crypto_cipher_spawn *spawn = crypto_instance_ctx(inst);
	struct xcbc_tfm_ctx *ctx = crypto_tfm_ctx(tfm);

	cipher = crypto_spawn_cipher(spawn);
	if (IS_ERR(cipher))
		return PTR_ERR(cipher);

	ctx->child = cipher;

	return 0;
};

static void xcbc_exit_tfm(struct crypto_tfm *tfm)
{
	struct xcbc_tfm_ctx *ctx = crypto_tfm_ctx(tfm);
	crypto_free_cipher(ctx->child);
}

static int xcbc_create(struct crypto_template *tmpl, struct rtattr **tb)
{
	struct shash_instance *inst;
	struct crypto_cipher_spawn *spawn;
	struct crypto_alg *alg;
	unsigned long alignmask;
	u32 mask;
	int err;

	err = crypto_check_attr_type(tb, CRYPTO_ALG_TYPE_SHASH, &mask);
	if (err)
		return err;

	inst = kzalloc(sizeof(*inst) + sizeof(*spawn), GFP_KERNEL);
	if (!inst)
		return -ENOMEM;
	spawn = shash_instance_ctx(inst);

	err = crypto_grab_cipher(spawn, shash_crypto_instance(inst),
				 crypto_attr_alg_name(tb[1]), 0, mask);
	if (err)
		goto err_free_inst;
	alg = crypto_spawn_cipher_alg(spawn);

	err = -EINVAL;
	if (alg->cra_blocksize != XCBC_BLOCKSIZE)
		goto err_free_inst;

	err = crypto_inst_setname(shash_crypto_instance(inst), tmpl->name, alg);
	if (err)
		goto err_free_inst;

	alignmask = alg->cra_alignmask | 3;
	inst->alg.base.cra_alignmask = alignmask;
	inst->alg.base.cra_priority = alg->cra_priority;
	inst->alg.base.cra_blocksize = alg->cra_blocksize;

	inst->alg.digestsize = alg->cra_blocksize;
	inst->alg.descsize = ALIGN(sizeof(struct xcbc_desc_ctx),
				   crypto_tfm_ctx_alignment()) +
			     (alignmask &
			      ~(crypto_tfm_ctx_alignment() - 1)) +
			     alg->cra_blocksize * 2;

	inst->alg.base.cra_ctxsize = ALIGN(sizeof(struct xcbc_tfm_ctx),
					   alignmask + 1) +
				     alg->cra_blocksize * 2;
	inst->alg.base.cra_init = xcbc_init_tfm;
	inst->alg.base.cra_exit = xcbc_exit_tfm;

	inst->alg.init = crypto_xcbc_digest_init;
	inst->alg.update = crypto_xcbc_digest_update;
	inst->alg.final = crypto_xcbc_digest_final;
	inst->alg.setkey = crypto_xcbc_digest_setkey;

	inst->free = shash_free_singlespawn_instance;

	err = shash_register_instance(tmpl, inst);
	if (err) {
err_free_inst:
		shash_free_singlespawn_instance(inst);
	}
	return err;
}

static struct crypto_template crypto_xcbc_tmpl = {
	.name = "xcbc",
	.create = xcbc_create,
	.module = THIS_MODULE,
};

static int __init crypto_xcbc_module_init(void)
{
	return crypto_register_template(&crypto_xcbc_tmpl);
}

static void __exit crypto_xcbc_module_exit(void)
{
	crypto_unregister_template(&crypto_xcbc_tmpl);
}

subsys_initcall(crypto_xcbc_module_init);
module_exit(crypto_xcbc_module_exit);

MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("XCBC keyed hash algorithm");
MODULE_ALIAS_CRYPTO("xcbc");
MODULE_IMPORT_NS(CRYPTO_INTERNAL);
back to top