Revision 300f786b2683f8bb1ec0afb6e1851183a479c86d authored by Cyrill Gorcunov on 07 June 2012, 21:21:12 UTC, committed by Linus Torvalds on 07 June 2012, 21:43:55 UTC
Zero is written at clear_tid_address when the process exits.  This
functionality is used by pthread_join().

We already have sys_set_tid_address() to change this address for the
current task but there is no way to obtain it from user space.

Without the ability to find this address and dump it we can't restore
pthread'ed apps which call pthread_join() once they have been restored.

This patch introduces the PR_GET_TID_ADDRESS prctl option which allows
the current process to obtain own clear_tid_address.

This feature is available iif CONFIG_CHECKPOINT_RESTORE is set.

[akpm@linux-foundation.org: fix prctl numbering]
Signed-off-by: Andrew Vagin <avagin@openvz.org>
Signed-off-by: Cyrill Gorcunov <gorcunov@openvz.org>
Cc: Pedro Alves <palves@redhat.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Pavel Emelyanov <xemul@parallels.com>
Cc: Tejun Heo <tj@kernel.org>
Acked-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
1 parent 1ad75b9
Raw File
xen-asm.S
/*
 * Asm versions of Xen pv-ops, suitable for either direct use or
 * inlining.  The inline versions are the same as the direct-use
 * versions, with the pre- and post-amble chopped off.
 *
 * This code is encoded for size rather than absolute efficiency, with
 * a view to being able to inline as much as possible.
 *
 * We only bother with direct forms (ie, vcpu in percpu data) of the
 * operations here; the indirect forms are better handled in C, since
 * they're generally too large to inline anyway.
 */

#include <asm/asm-offsets.h>
#include <asm/percpu.h>
#include <asm/processor-flags.h>

#include "xen-asm.h"

/*
 * Enable events.  This clears the event mask and tests the pending
 * event status with one and operation.  If there are pending events,
 * then enter the hypervisor to get them handled.
 */
ENTRY(xen_irq_enable_direct)
	/* Unmask events */
	movb $0, PER_CPU_VAR(xen_vcpu_info) + XEN_vcpu_info_mask

	/*
	 * Preempt here doesn't matter because that will deal with any
	 * pending interrupts.  The pending check may end up being run
	 * on the wrong CPU, but that doesn't hurt.
	 */

	/* Test for pending */
	testb $0xff, PER_CPU_VAR(xen_vcpu_info) + XEN_vcpu_info_pending
	jz 1f

2:	call check_events
1:
ENDPATCH(xen_irq_enable_direct)
	ret
	ENDPROC(xen_irq_enable_direct)
	RELOC(xen_irq_enable_direct, 2b+1)


/*
 * Disabling events is simply a matter of making the event mask
 * non-zero.
 */
ENTRY(xen_irq_disable_direct)
	movb $1, PER_CPU_VAR(xen_vcpu_info) + XEN_vcpu_info_mask
ENDPATCH(xen_irq_disable_direct)
	ret
	ENDPROC(xen_irq_disable_direct)
	RELOC(xen_irq_disable_direct, 0)

/*
 * (xen_)save_fl is used to get the current interrupt enable status.
 * Callers expect the status to be in X86_EFLAGS_IF, and other bits
 * may be set in the return value.  We take advantage of this by
 * making sure that X86_EFLAGS_IF has the right value (and other bits
 * in that byte are 0), but other bits in the return value are
 * undefined.  We need to toggle the state of the bit, because Xen and
 * x86 use opposite senses (mask vs enable).
 */
ENTRY(xen_save_fl_direct)
	testb $0xff, PER_CPU_VAR(xen_vcpu_info) + XEN_vcpu_info_mask
	setz %ah
	addb %ah, %ah
ENDPATCH(xen_save_fl_direct)
	ret
	ENDPROC(xen_save_fl_direct)
	RELOC(xen_save_fl_direct, 0)


/*
 * In principle the caller should be passing us a value return from
 * xen_save_fl_direct, but for robustness sake we test only the
 * X86_EFLAGS_IF flag rather than the whole byte. After setting the
 * interrupt mask state, it checks for unmasked pending events and
 * enters the hypervisor to get them delivered if so.
 */
ENTRY(xen_restore_fl_direct)
#ifdef CONFIG_X86_64
	testw $X86_EFLAGS_IF, %di
#else
	testb $X86_EFLAGS_IF>>8, %ah
#endif
	setz PER_CPU_VAR(xen_vcpu_info) + XEN_vcpu_info_mask
	/*
	 * Preempt here doesn't matter because that will deal with any
	 * pending interrupts.  The pending check may end up being run
	 * on the wrong CPU, but that doesn't hurt.
	 */

	/* check for unmasked and pending */
	cmpw $0x0001, PER_CPU_VAR(xen_vcpu_info) + XEN_vcpu_info_pending
	jnz 1f
2:	call check_events
1:
ENDPATCH(xen_restore_fl_direct)
	ret
	ENDPROC(xen_restore_fl_direct)
	RELOC(xen_restore_fl_direct, 2b+1)


/*
 * Force an event check by making a hypercall, but preserve regs
 * before making the call.
 */
check_events:
#ifdef CONFIG_X86_32
	push %eax
	push %ecx
	push %edx
	call xen_force_evtchn_callback
	pop %edx
	pop %ecx
	pop %eax
#else
	push %rax
	push %rcx
	push %rdx
	push %rsi
	push %rdi
	push %r8
	push %r9
	push %r10
	push %r11
	call xen_force_evtchn_callback
	pop %r11
	pop %r10
	pop %r9
	pop %r8
	pop %rdi
	pop %rsi
	pop %rdx
	pop %rcx
	pop %rax
#endif
	ret
back to top