Revision 3049f0fd3b7103b44208a068ac6a7e4ad7ebd883 authored by David S. Miller on 12 June 2020, 01:25:20 UTC, committed by David S. Miller on 12 June 2020, 01:25:20 UTC
Jeff Kirsher says:

====================
Intel Wired LAN Driver Updates 2020-06-11

This series contains fixes to the iavf driver.

Brett fixes the supported link speeds in the iavf driver, which was only
able to report speeds that the i40e driver supported and was missing the
speeds supported by the ice driver.  In addition, fix how 2.5 and 5.0
GbE speeds are reported.

Alek fixes a enum comparison that was comparing two different enums that
may have different values, so update the comparison to use matching
enums.

Paul increases the time to complete a reset to allow for 128 VFs to
complete a reset.
====================

Signed-off-by: David S. Miller <davem@davemloft.net>
2 parent s 07007db + 8e3e4b9
Raw File
async_raid6_recov.c
// SPDX-License-Identifier: GPL-2.0-or-later
/*
 * Asynchronous RAID-6 recovery calculations ASYNC_TX API.
 * Copyright(c) 2009 Intel Corporation
 *
 * based on raid6recov.c:
 *   Copyright 2002 H. Peter Anvin
 */
#include <linux/kernel.h>
#include <linux/interrupt.h>
#include <linux/module.h>
#include <linux/dma-mapping.h>
#include <linux/raid/pq.h>
#include <linux/async_tx.h>
#include <linux/dmaengine.h>

static struct dma_async_tx_descriptor *
async_sum_product(struct page *dest, struct page **srcs, unsigned char *coef,
		  size_t len, struct async_submit_ctl *submit)
{
	struct dma_chan *chan = async_tx_find_channel(submit, DMA_PQ,
						      &dest, 1, srcs, 2, len);
	struct dma_device *dma = chan ? chan->device : NULL;
	struct dmaengine_unmap_data *unmap = NULL;
	const u8 *amul, *bmul;
	u8 ax, bx;
	u8 *a, *b, *c;

	if (dma)
		unmap = dmaengine_get_unmap_data(dma->dev, 3, GFP_NOWAIT);

	if (unmap) {
		struct device *dev = dma->dev;
		dma_addr_t pq[2];
		struct dma_async_tx_descriptor *tx;
		enum dma_ctrl_flags dma_flags = DMA_PREP_PQ_DISABLE_P;

		if (submit->flags & ASYNC_TX_FENCE)
			dma_flags |= DMA_PREP_FENCE;
		unmap->addr[0] = dma_map_page(dev, srcs[0], 0, len, DMA_TO_DEVICE);
		unmap->addr[1] = dma_map_page(dev, srcs[1], 0, len, DMA_TO_DEVICE);
		unmap->to_cnt = 2;

		unmap->addr[2] = dma_map_page(dev, dest, 0, len, DMA_BIDIRECTIONAL);
		unmap->bidi_cnt = 1;
		/* engine only looks at Q, but expects it to follow P */
		pq[1] = unmap->addr[2];

		unmap->len = len;
		tx = dma->device_prep_dma_pq(chan, pq, unmap->addr, 2, coef,
					     len, dma_flags);
		if (tx) {
			dma_set_unmap(tx, unmap);
			async_tx_submit(chan, tx, submit);
			dmaengine_unmap_put(unmap);
			return tx;
		}

		/* could not get a descriptor, unmap and fall through to
		 * the synchronous path
		 */
		dmaengine_unmap_put(unmap);
	}

	/* run the operation synchronously */
	async_tx_quiesce(&submit->depend_tx);
	amul = raid6_gfmul[coef[0]];
	bmul = raid6_gfmul[coef[1]];
	a = page_address(srcs[0]);
	b = page_address(srcs[1]);
	c = page_address(dest);

	while (len--) {
		ax    = amul[*a++];
		bx    = bmul[*b++];
		*c++ = ax ^ bx;
	}

	return NULL;
}

static struct dma_async_tx_descriptor *
async_mult(struct page *dest, struct page *src, u8 coef, size_t len,
	   struct async_submit_ctl *submit)
{
	struct dma_chan *chan = async_tx_find_channel(submit, DMA_PQ,
						      &dest, 1, &src, 1, len);
	struct dma_device *dma = chan ? chan->device : NULL;
	struct dmaengine_unmap_data *unmap = NULL;
	const u8 *qmul; /* Q multiplier table */
	u8 *d, *s;

	if (dma)
		unmap = dmaengine_get_unmap_data(dma->dev, 3, GFP_NOWAIT);

	if (unmap) {
		dma_addr_t dma_dest[2];
		struct device *dev = dma->dev;
		struct dma_async_tx_descriptor *tx;
		enum dma_ctrl_flags dma_flags = DMA_PREP_PQ_DISABLE_P;

		if (submit->flags & ASYNC_TX_FENCE)
			dma_flags |= DMA_PREP_FENCE;
		unmap->addr[0] = dma_map_page(dev, src, 0, len, DMA_TO_DEVICE);
		unmap->to_cnt++;
		unmap->addr[1] = dma_map_page(dev, dest, 0, len, DMA_BIDIRECTIONAL);
		dma_dest[1] = unmap->addr[1];
		unmap->bidi_cnt++;
		unmap->len = len;

		/* this looks funny, but the engine looks for Q at
		 * dma_dest[1] and ignores dma_dest[0] as a dest
		 * due to DMA_PREP_PQ_DISABLE_P
		 */
		tx = dma->device_prep_dma_pq(chan, dma_dest, unmap->addr,
					     1, &coef, len, dma_flags);

		if (tx) {
			dma_set_unmap(tx, unmap);
			dmaengine_unmap_put(unmap);
			async_tx_submit(chan, tx, submit);
			return tx;
		}

		/* could not get a descriptor, unmap and fall through to
		 * the synchronous path
		 */
		dmaengine_unmap_put(unmap);
	}

	/* no channel available, or failed to allocate a descriptor, so
	 * perform the operation synchronously
	 */
	async_tx_quiesce(&submit->depend_tx);
	qmul  = raid6_gfmul[coef];
	d = page_address(dest);
	s = page_address(src);

	while (len--)
		*d++ = qmul[*s++];

	return NULL;
}

static struct dma_async_tx_descriptor *
__2data_recov_4(int disks, size_t bytes, int faila, int failb,
		struct page **blocks, struct async_submit_ctl *submit)
{
	struct dma_async_tx_descriptor *tx = NULL;
	struct page *p, *q, *a, *b;
	struct page *srcs[2];
	unsigned char coef[2];
	enum async_tx_flags flags = submit->flags;
	dma_async_tx_callback cb_fn = submit->cb_fn;
	void *cb_param = submit->cb_param;
	void *scribble = submit->scribble;

	p = blocks[disks-2];
	q = blocks[disks-1];

	a = blocks[faila];
	b = blocks[failb];

	/* in the 4 disk case P + Pxy == P and Q + Qxy == Q */
	/* Dx = A*(P+Pxy) + B*(Q+Qxy) */
	srcs[0] = p;
	srcs[1] = q;
	coef[0] = raid6_gfexi[failb-faila];
	coef[1] = raid6_gfinv[raid6_gfexp[faila]^raid6_gfexp[failb]];
	init_async_submit(submit, ASYNC_TX_FENCE, tx, NULL, NULL, scribble);
	tx = async_sum_product(b, srcs, coef, bytes, submit);

	/* Dy = P+Pxy+Dx */
	srcs[0] = p;
	srcs[1] = b;
	init_async_submit(submit, flags | ASYNC_TX_XOR_ZERO_DST, tx, cb_fn,
			  cb_param, scribble);
	tx = async_xor(a, srcs, 0, 2, bytes, submit);

	return tx;

}

static struct dma_async_tx_descriptor *
__2data_recov_5(int disks, size_t bytes, int faila, int failb,
		struct page **blocks, struct async_submit_ctl *submit)
{
	struct dma_async_tx_descriptor *tx = NULL;
	struct page *p, *q, *g, *dp, *dq;
	struct page *srcs[2];
	unsigned char coef[2];
	enum async_tx_flags flags = submit->flags;
	dma_async_tx_callback cb_fn = submit->cb_fn;
	void *cb_param = submit->cb_param;
	void *scribble = submit->scribble;
	int good_srcs, good, i;

	good_srcs = 0;
	good = -1;
	for (i = 0; i < disks-2; i++) {
		if (blocks[i] == NULL)
			continue;
		if (i == faila || i == failb)
			continue;
		good = i;
		good_srcs++;
	}
	BUG_ON(good_srcs > 1);

	p = blocks[disks-2];
	q = blocks[disks-1];
	g = blocks[good];

	/* Compute syndrome with zero for the missing data pages
	 * Use the dead data pages as temporary storage for delta p and
	 * delta q
	 */
	dp = blocks[faila];
	dq = blocks[failb];

	init_async_submit(submit, ASYNC_TX_FENCE, tx, NULL, NULL, scribble);
	tx = async_memcpy(dp, g, 0, 0, bytes, submit);
	init_async_submit(submit, ASYNC_TX_FENCE, tx, NULL, NULL, scribble);
	tx = async_mult(dq, g, raid6_gfexp[good], bytes, submit);

	/* compute P + Pxy */
	srcs[0] = dp;
	srcs[1] = p;
	init_async_submit(submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
			  NULL, NULL, scribble);
	tx = async_xor(dp, srcs, 0, 2, bytes, submit);

	/* compute Q + Qxy */
	srcs[0] = dq;
	srcs[1] = q;
	init_async_submit(submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
			  NULL, NULL, scribble);
	tx = async_xor(dq, srcs, 0, 2, bytes, submit);

	/* Dx = A*(P+Pxy) + B*(Q+Qxy) */
	srcs[0] = dp;
	srcs[1] = dq;
	coef[0] = raid6_gfexi[failb-faila];
	coef[1] = raid6_gfinv[raid6_gfexp[faila]^raid6_gfexp[failb]];
	init_async_submit(submit, ASYNC_TX_FENCE, tx, NULL, NULL, scribble);
	tx = async_sum_product(dq, srcs, coef, bytes, submit);

	/* Dy = P+Pxy+Dx */
	srcs[0] = dp;
	srcs[1] = dq;
	init_async_submit(submit, flags | ASYNC_TX_XOR_DROP_DST, tx, cb_fn,
			  cb_param, scribble);
	tx = async_xor(dp, srcs, 0, 2, bytes, submit);

	return tx;
}

static struct dma_async_tx_descriptor *
__2data_recov_n(int disks, size_t bytes, int faila, int failb,
	      struct page **blocks, struct async_submit_ctl *submit)
{
	struct dma_async_tx_descriptor *tx = NULL;
	struct page *p, *q, *dp, *dq;
	struct page *srcs[2];
	unsigned char coef[2];
	enum async_tx_flags flags = submit->flags;
	dma_async_tx_callback cb_fn = submit->cb_fn;
	void *cb_param = submit->cb_param;
	void *scribble = submit->scribble;

	p = blocks[disks-2];
	q = blocks[disks-1];

	/* Compute syndrome with zero for the missing data pages
	 * Use the dead data pages as temporary storage for
	 * delta p and delta q
	 */
	dp = blocks[faila];
	blocks[faila] = NULL;
	blocks[disks-2] = dp;
	dq = blocks[failb];
	blocks[failb] = NULL;
	blocks[disks-1] = dq;

	init_async_submit(submit, ASYNC_TX_FENCE, tx, NULL, NULL, scribble);
	tx = async_gen_syndrome(blocks, 0, disks, bytes, submit);

	/* Restore pointer table */
	blocks[faila]   = dp;
	blocks[failb]   = dq;
	blocks[disks-2] = p;
	blocks[disks-1] = q;

	/* compute P + Pxy */
	srcs[0] = dp;
	srcs[1] = p;
	init_async_submit(submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
			  NULL, NULL, scribble);
	tx = async_xor(dp, srcs, 0, 2, bytes, submit);

	/* compute Q + Qxy */
	srcs[0] = dq;
	srcs[1] = q;
	init_async_submit(submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
			  NULL, NULL, scribble);
	tx = async_xor(dq, srcs, 0, 2, bytes, submit);

	/* Dx = A*(P+Pxy) + B*(Q+Qxy) */
	srcs[0] = dp;
	srcs[1] = dq;
	coef[0] = raid6_gfexi[failb-faila];
	coef[1] = raid6_gfinv[raid6_gfexp[faila]^raid6_gfexp[failb]];
	init_async_submit(submit, ASYNC_TX_FENCE, tx, NULL, NULL, scribble);
	tx = async_sum_product(dq, srcs, coef, bytes, submit);

	/* Dy = P+Pxy+Dx */
	srcs[0] = dp;
	srcs[1] = dq;
	init_async_submit(submit, flags | ASYNC_TX_XOR_DROP_DST, tx, cb_fn,
			  cb_param, scribble);
	tx = async_xor(dp, srcs, 0, 2, bytes, submit);

	return tx;
}

/**
 * async_raid6_2data_recov - asynchronously calculate two missing data blocks
 * @disks: number of disks in the RAID-6 array
 * @bytes: block size
 * @faila: first failed drive index
 * @failb: second failed drive index
 * @blocks: array of source pointers where the last two entries are p and q
 * @submit: submission/completion modifiers
 */
struct dma_async_tx_descriptor *
async_raid6_2data_recov(int disks, size_t bytes, int faila, int failb,
			struct page **blocks, struct async_submit_ctl *submit)
{
	void *scribble = submit->scribble;
	int non_zero_srcs, i;

	BUG_ON(faila == failb);
	if (failb < faila)
		swap(faila, failb);

	pr_debug("%s: disks: %d len: %zu\n", __func__, disks, bytes);

	/* if a dma resource is not available or a scribble buffer is not
	 * available punt to the synchronous path.  In the 'dma not
	 * available' case be sure to use the scribble buffer to
	 * preserve the content of 'blocks' as the caller intended.
	 */
	if (!async_dma_find_channel(DMA_PQ) || !scribble) {
		void **ptrs = scribble ? scribble : (void **) blocks;

		async_tx_quiesce(&submit->depend_tx);
		for (i = 0; i < disks; i++)
			if (blocks[i] == NULL)
				ptrs[i] = (void *) raid6_empty_zero_page;
			else
				ptrs[i] = page_address(blocks[i]);

		raid6_2data_recov(disks, bytes, faila, failb, ptrs);

		async_tx_sync_epilog(submit);

		return NULL;
	}

	non_zero_srcs = 0;
	for (i = 0; i < disks-2 && non_zero_srcs < 4; i++)
		if (blocks[i])
			non_zero_srcs++;
	switch (non_zero_srcs) {
	case 0:
	case 1:
		/* There must be at least 2 sources - the failed devices. */
		BUG();

	case 2:
		/* dma devices do not uniformly understand a zero source pq
		 * operation (in contrast to the synchronous case), so
		 * explicitly handle the special case of a 4 disk array with
		 * both data disks missing.
		 */
		return __2data_recov_4(disks, bytes, faila, failb, blocks, submit);
	case 3:
		/* dma devices do not uniformly understand a single
		 * source pq operation (in contrast to the synchronous
		 * case), so explicitly handle the special case of a 5 disk
		 * array with 2 of 3 data disks missing.
		 */
		return __2data_recov_5(disks, bytes, faila, failb, blocks, submit);
	default:
		return __2data_recov_n(disks, bytes, faila, failb, blocks, submit);
	}
}
EXPORT_SYMBOL_GPL(async_raid6_2data_recov);

/**
 * async_raid6_datap_recov - asynchronously calculate a data and the 'p' block
 * @disks: number of disks in the RAID-6 array
 * @bytes: block size
 * @faila: failed drive index
 * @blocks: array of source pointers where the last two entries are p and q
 * @submit: submission/completion modifiers
 */
struct dma_async_tx_descriptor *
async_raid6_datap_recov(int disks, size_t bytes, int faila,
			struct page **blocks, struct async_submit_ctl *submit)
{
	struct dma_async_tx_descriptor *tx = NULL;
	struct page *p, *q, *dq;
	u8 coef;
	enum async_tx_flags flags = submit->flags;
	dma_async_tx_callback cb_fn = submit->cb_fn;
	void *cb_param = submit->cb_param;
	void *scribble = submit->scribble;
	int good_srcs, good, i;
	struct page *srcs[2];

	pr_debug("%s: disks: %d len: %zu\n", __func__, disks, bytes);

	/* if a dma resource is not available or a scribble buffer is not
	 * available punt to the synchronous path.  In the 'dma not
	 * available' case be sure to use the scribble buffer to
	 * preserve the content of 'blocks' as the caller intended.
	 */
	if (!async_dma_find_channel(DMA_PQ) || !scribble) {
		void **ptrs = scribble ? scribble : (void **) blocks;

		async_tx_quiesce(&submit->depend_tx);
		for (i = 0; i < disks; i++)
			if (blocks[i] == NULL)
				ptrs[i] = (void*)raid6_empty_zero_page;
			else
				ptrs[i] = page_address(blocks[i]);

		raid6_datap_recov(disks, bytes, faila, ptrs);

		async_tx_sync_epilog(submit);

		return NULL;
	}

	good_srcs = 0;
	good = -1;
	for (i = 0; i < disks-2; i++) {
		if (i == faila)
			continue;
		if (blocks[i]) {
			good = i;
			good_srcs++;
			if (good_srcs > 1)
				break;
		}
	}
	BUG_ON(good_srcs == 0);

	p = blocks[disks-2];
	q = blocks[disks-1];

	/* Compute syndrome with zero for the missing data page
	 * Use the dead data page as temporary storage for delta q
	 */
	dq = blocks[faila];
	blocks[faila] = NULL;
	blocks[disks-1] = dq;

	/* in the 4-disk case we only need to perform a single source
	 * multiplication with the one good data block.
	 */
	if (good_srcs == 1) {
		struct page *g = blocks[good];

		init_async_submit(submit, ASYNC_TX_FENCE, tx, NULL, NULL,
				  scribble);
		tx = async_memcpy(p, g, 0, 0, bytes, submit);

		init_async_submit(submit, ASYNC_TX_FENCE, tx, NULL, NULL,
				  scribble);
		tx = async_mult(dq, g, raid6_gfexp[good], bytes, submit);
	} else {
		init_async_submit(submit, ASYNC_TX_FENCE, tx, NULL, NULL,
				  scribble);
		tx = async_gen_syndrome(blocks, 0, disks, bytes, submit);
	}

	/* Restore pointer table */
	blocks[faila]   = dq;
	blocks[disks-1] = q;

	/* calculate g^{-faila} */
	coef = raid6_gfinv[raid6_gfexp[faila]];

	srcs[0] = dq;
	srcs[1] = q;
	init_async_submit(submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
			  NULL, NULL, scribble);
	tx = async_xor(dq, srcs, 0, 2, bytes, submit);

	init_async_submit(submit, ASYNC_TX_FENCE, tx, NULL, NULL, scribble);
	tx = async_mult(dq, dq, coef, bytes, submit);

	srcs[0] = p;
	srcs[1] = dq;
	init_async_submit(submit, flags | ASYNC_TX_XOR_DROP_DST, tx, cb_fn,
			  cb_param, scribble);
	tx = async_xor(p, srcs, 0, 2, bytes, submit);

	return tx;
}
EXPORT_SYMBOL_GPL(async_raid6_datap_recov);

MODULE_AUTHOR("Dan Williams <dan.j.williams@intel.com>");
MODULE_DESCRIPTION("asynchronous RAID-6 recovery api");
MODULE_LICENSE("GPL");
back to top