Revision 3049f0fd3b7103b44208a068ac6a7e4ad7ebd883 authored by David S. Miller on 12 June 2020, 01:25:20 UTC, committed by David S. Miller on 12 June 2020, 01:25:20 UTC
Jeff Kirsher says:

====================
Intel Wired LAN Driver Updates 2020-06-11

This series contains fixes to the iavf driver.

Brett fixes the supported link speeds in the iavf driver, which was only
able to report speeds that the i40e driver supported and was missing the
speeds supported by the ice driver.  In addition, fix how 2.5 and 5.0
GbE speeds are reported.

Alek fixes a enum comparison that was comparing two different enums that
may have different values, so update the comparison to use matching
enums.

Paul increases the time to complete a reset to allow for 128 VFs to
complete a reset.
====================

Signed-off-by: David S. Miller <davem@davemloft.net>
2 parent s 07007db + 8e3e4b9
Raw File
sm4_generic.c
// SPDX-License-Identifier: GPL-2.0

/*
 * SM4 Cipher Algorithm.
 *
 * Copyright (C) 2018 ARM Limited or its affiliates.
 * All rights reserved.
 */

#include <crypto/sm4.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/types.h>
#include <linux/errno.h>
#include <linux/crypto.h>
#include <asm/byteorder.h>
#include <asm/unaligned.h>

static const u32 fk[4] = {
	0xa3b1bac6, 0x56aa3350, 0x677d9197, 0xb27022dc
};

static const u8 sbox[256] = {
	0xd6, 0x90, 0xe9, 0xfe, 0xcc, 0xe1, 0x3d, 0xb7,
	0x16, 0xb6, 0x14, 0xc2, 0x28, 0xfb, 0x2c, 0x05,
	0x2b, 0x67, 0x9a, 0x76, 0x2a, 0xbe, 0x04, 0xc3,
	0xaa, 0x44, 0x13, 0x26, 0x49, 0x86, 0x06, 0x99,
	0x9c, 0x42, 0x50, 0xf4, 0x91, 0xef, 0x98, 0x7a,
	0x33, 0x54, 0x0b, 0x43, 0xed, 0xcf, 0xac, 0x62,
	0xe4, 0xb3, 0x1c, 0xa9, 0xc9, 0x08, 0xe8, 0x95,
	0x80, 0xdf, 0x94, 0xfa, 0x75, 0x8f, 0x3f, 0xa6,
	0x47, 0x07, 0xa7, 0xfc, 0xf3, 0x73, 0x17, 0xba,
	0x83, 0x59, 0x3c, 0x19, 0xe6, 0x85, 0x4f, 0xa8,
	0x68, 0x6b, 0x81, 0xb2, 0x71, 0x64, 0xda, 0x8b,
	0xf8, 0xeb, 0x0f, 0x4b, 0x70, 0x56, 0x9d, 0x35,
	0x1e, 0x24, 0x0e, 0x5e, 0x63, 0x58, 0xd1, 0xa2,
	0x25, 0x22, 0x7c, 0x3b, 0x01, 0x21, 0x78, 0x87,
	0xd4, 0x00, 0x46, 0x57, 0x9f, 0xd3, 0x27, 0x52,
	0x4c, 0x36, 0x02, 0xe7, 0xa0, 0xc4, 0xc8, 0x9e,
	0xea, 0xbf, 0x8a, 0xd2, 0x40, 0xc7, 0x38, 0xb5,
	0xa3, 0xf7, 0xf2, 0xce, 0xf9, 0x61, 0x15, 0xa1,
	0xe0, 0xae, 0x5d, 0xa4, 0x9b, 0x34, 0x1a, 0x55,
	0xad, 0x93, 0x32, 0x30, 0xf5, 0x8c, 0xb1, 0xe3,
	0x1d, 0xf6, 0xe2, 0x2e, 0x82, 0x66, 0xca, 0x60,
	0xc0, 0x29, 0x23, 0xab, 0x0d, 0x53, 0x4e, 0x6f,
	0xd5, 0xdb, 0x37, 0x45, 0xde, 0xfd, 0x8e, 0x2f,
	0x03, 0xff, 0x6a, 0x72, 0x6d, 0x6c, 0x5b, 0x51,
	0x8d, 0x1b, 0xaf, 0x92, 0xbb, 0xdd, 0xbc, 0x7f,
	0x11, 0xd9, 0x5c, 0x41, 0x1f, 0x10, 0x5a, 0xd8,
	0x0a, 0xc1, 0x31, 0x88, 0xa5, 0xcd, 0x7b, 0xbd,
	0x2d, 0x74, 0xd0, 0x12, 0xb8, 0xe5, 0xb4, 0xb0,
	0x89, 0x69, 0x97, 0x4a, 0x0c, 0x96, 0x77, 0x7e,
	0x65, 0xb9, 0xf1, 0x09, 0xc5, 0x6e, 0xc6, 0x84,
	0x18, 0xf0, 0x7d, 0xec, 0x3a, 0xdc, 0x4d, 0x20,
	0x79, 0xee, 0x5f, 0x3e, 0xd7, 0xcb, 0x39, 0x48
};

static const u32 ck[] = {
	0x00070e15, 0x1c232a31, 0x383f464d, 0x545b6269,
	0x70777e85, 0x8c939aa1, 0xa8afb6bd, 0xc4cbd2d9,
	0xe0e7eef5, 0xfc030a11, 0x181f262d, 0x343b4249,
	0x50575e65, 0x6c737a81, 0x888f969d, 0xa4abb2b9,
	0xc0c7ced5, 0xdce3eaf1, 0xf8ff060d, 0x141b2229,
	0x30373e45, 0x4c535a61, 0x686f767d, 0x848b9299,
	0xa0a7aeb5, 0xbcc3cad1, 0xd8dfe6ed, 0xf4fb0209,
	0x10171e25, 0x2c333a41, 0x484f565d, 0x646b7279
};

static u32 sm4_t_non_lin_sub(u32 x)
{
	int i;
	u8 *b = (u8 *)&x;

	for (i = 0; i < 4; ++i)
		b[i] = sbox[b[i]];

	return x;
}

static u32 sm4_key_lin_sub(u32 x)
{
	return x ^ rol32(x, 13) ^ rol32(x, 23);

}

static u32 sm4_enc_lin_sub(u32 x)
{
	return x ^ rol32(x, 2) ^ rol32(x, 10) ^ rol32(x, 18) ^ rol32(x, 24);
}

static u32 sm4_key_sub(u32 x)
{
	return sm4_key_lin_sub(sm4_t_non_lin_sub(x));
}

static u32 sm4_enc_sub(u32 x)
{
	return sm4_enc_lin_sub(sm4_t_non_lin_sub(x));
}

static u32 sm4_round(const u32 *x, const u32 rk)
{
	return x[0] ^ sm4_enc_sub(x[1] ^ x[2] ^ x[3] ^ rk);
}


/**
 * crypto_sm4_expand_key - Expands the SM4 key as described in GB/T 32907-2016
 * @ctx:	The location where the computed key will be stored.
 * @in_key:	The supplied key.
 * @key_len:	The length of the supplied key.
 *
 * Returns 0 on success. The function fails only if an invalid key size (or
 * pointer) is supplied.
 */
int crypto_sm4_expand_key(struct crypto_sm4_ctx *ctx, const u8 *in_key,
			  unsigned int key_len)
{
	u32 rk[4], t;
	const u32 *key = (u32 *)in_key;
	int i;

	if (key_len != SM4_KEY_SIZE)
		return -EINVAL;

	for (i = 0; i < 4; ++i)
		rk[i] = get_unaligned_be32(&key[i]) ^ fk[i];

	for (i = 0; i < 32; ++i) {
		t = rk[0] ^ sm4_key_sub(rk[1] ^ rk[2] ^ rk[3] ^ ck[i]);
		ctx->rkey_enc[i] = t;
		rk[0] = rk[1];
		rk[1] = rk[2];
		rk[2] = rk[3];
		rk[3] = t;
	}

	for (i = 0; i < 32; ++i)
		ctx->rkey_dec[i] = ctx->rkey_enc[31 - i];

	return 0;
}
EXPORT_SYMBOL_GPL(crypto_sm4_expand_key);

/**
 * crypto_sm4_set_key - Set the SM4 key.
 * @tfm:	The %crypto_tfm that is used in the context.
 * @in_key:	The input key.
 * @key_len:	The size of the key.
 *
 * This function uses crypto_sm4_expand_key() to expand the key.
 * &crypto_sm4_ctx _must_ be the private data embedded in @tfm which is
 * retrieved with crypto_tfm_ctx().
 *
 * Return: 0 on success; -EINVAL on failure (only happens for bad key lengths)
 */
int crypto_sm4_set_key(struct crypto_tfm *tfm, const u8 *in_key,
		       unsigned int key_len)
{
	struct crypto_sm4_ctx *ctx = crypto_tfm_ctx(tfm);

	return crypto_sm4_expand_key(ctx, in_key, key_len);
}
EXPORT_SYMBOL_GPL(crypto_sm4_set_key);

static void sm4_do_crypt(const u32 *rk, u32 *out, const u32 *in)
{
	u32 x[4], i, t;

	for (i = 0; i < 4; ++i)
		x[i] = get_unaligned_be32(&in[i]);

	for (i = 0; i < 32; ++i) {
		t = sm4_round(x, rk[i]);
		x[0] = x[1];
		x[1] = x[2];
		x[2] = x[3];
		x[3] = t;
	}

	for (i = 0; i < 4; ++i)
		put_unaligned_be32(x[3 - i], &out[i]);
}

/* encrypt a block of text */

void crypto_sm4_encrypt(struct crypto_tfm *tfm, u8 *out, const u8 *in)
{
	const struct crypto_sm4_ctx *ctx = crypto_tfm_ctx(tfm);

	sm4_do_crypt(ctx->rkey_enc, (u32 *)out, (u32 *)in);
}
EXPORT_SYMBOL_GPL(crypto_sm4_encrypt);

/* decrypt a block of text */

void crypto_sm4_decrypt(struct crypto_tfm *tfm, u8 *out, const u8 *in)
{
	const struct crypto_sm4_ctx *ctx = crypto_tfm_ctx(tfm);

	sm4_do_crypt(ctx->rkey_dec, (u32 *)out, (u32 *)in);
}
EXPORT_SYMBOL_GPL(crypto_sm4_decrypt);

static struct crypto_alg sm4_alg = {
	.cra_name		=	"sm4",
	.cra_driver_name	=	"sm4-generic",
	.cra_priority		=	100,
	.cra_flags		=	CRYPTO_ALG_TYPE_CIPHER,
	.cra_blocksize		=	SM4_BLOCK_SIZE,
	.cra_ctxsize		=	sizeof(struct crypto_sm4_ctx),
	.cra_module		=	THIS_MODULE,
	.cra_u			=	{
		.cipher = {
			.cia_min_keysize	=	SM4_KEY_SIZE,
			.cia_max_keysize	=	SM4_KEY_SIZE,
			.cia_setkey		=	crypto_sm4_set_key,
			.cia_encrypt		=	crypto_sm4_encrypt,
			.cia_decrypt		=	crypto_sm4_decrypt
		}
	}
};

static int __init sm4_init(void)
{
	return crypto_register_alg(&sm4_alg);
}

static void __exit sm4_fini(void)
{
	crypto_unregister_alg(&sm4_alg);
}

subsys_initcall(sm4_init);
module_exit(sm4_fini);

MODULE_DESCRIPTION("SM4 Cipher Algorithm");
MODULE_LICENSE("GPL v2");
MODULE_ALIAS_CRYPTO("sm4");
MODULE_ALIAS_CRYPTO("sm4-generic");
back to top