Skip to main content
  • Home
  • Development
  • Documentation
  • Donate
  • Operational login
  • Browse the archive

swh logo
SoftwareHeritage
Software
Heritage
Archive
Features
  • Search

  • Downloads

  • Save code now

  • Add forge now

  • Help

Revision 309eaaf7cc24a87dd735f7c296948c49e480c75e authored by Wesley Tansey on 27 December 2016, 18:52:38 UTC, committed by Wesley Tansey on 27 December 2016, 18:52:38 UTC
Updated readme
1 parent 0d6861e
  • Files
  • Changes
  • a7c1b35
  • /
  • smoothfdr
  • /
  • neuropost.py
Raw File Download
Permalinks

To reference or cite the objects present in the Software Heritage archive, permalinks based on SoftWare Hash IDentifiers (SWHIDs) must be used.
Select below a type of object currently browsed in order to display its associated SWHID and permalink.

  • revision
  • directory
  • content
revision badge
swh:1:rev:309eaaf7cc24a87dd735f7c296948c49e480c75e
directory badge Iframe embedding
swh:1:dir:04da6039d566175dd624849e997f84603c27b78c
content badge Iframe embedding
swh:1:cnt:2c3cf9331529b65bc7e4ba67b2e2da08539128e5
Citations

This interface enables to generate software citations, provided that the root directory of browsed objects contains a citation.cff or codemeta.json file.
Select below a type of object currently browsed in order to generate citations for them.

  • revision
  • directory
  • content
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
neuropost.py
import numpy as np
import nibabel as nib
import argparse
import csv
import os
from collections import defaultdict
from smoothed_fdr import calc_plateaus
from utils import *
from plotutils import *

def load_nii(filename):
    img = nib.load(filename)
    return img.get_data(), img.get_affine()

def save_nii(filename, data, coords):
    img = nib.Nifti1Image(data, coords)
    nib.save(img, filename)

def load_edges(filename):
    with open(filename, 'rb') as f:
        reader = csv.reader(f)
        edges = defaultdict(list)
        for line in reader:
            x,y = int(line[0]), int(line[1])
            if y not in edges[x]:
                edges[x].append(y)
            if x not in edges[y]:
                edges[y].append(x)
    return edges


def load_shape_lookup(filename):
    with open(filename, 'rb') as f:
        reader = csv.reader(f)
        shape = [int(x) for x in reader.next()]
        lookup = {}
        for line in reader:
            lookup[int(line[0])] = (int(line[1]), int(line[2]), int(line[3]))
    return shape, lookup

def load_weights(filename, data, lookup, fdr=None):
    weights = np.loadtxt(filename, delimiter=',')
    if fdr is not None:
        weights = calc_fdr(weights, fdr)
    for i, w in enumerate(weights):
        v = lookup[i]
        data[v] = w

def blob_fdr(weights_filename, posteriors_filename, data, lookup, edges, fdr):
    weights = np.loadtxt(weights_filename, delimiter=',')
    betas = -np.log(1.0/weights - 1.)
    posteriors = np.loadtxt(posteriors_filename, delimiter=',')
    plateaus = calc_plateaus(betas, edges=edges)
    aggregate = np.array([posteriors[list(p)].mean() for v,p in plateaus])
    discoveries = calc_fdr(aggregate, fdr)
    for (v,p), d in zip(plateaus, discoveries):
        weights[list(p)] = d
    for i, w in enumerate(weights):
        v = lookup[i]
        data[v] = w
    return plateaus

def thresholded_posterior_clusters(posteriors_filename, data, lookup, edges, fdr, mincluster):
    posteriors = np.loadtxt(posteriors_filename, delimiter=',')
    fakebetas = np.array(posteriors)
    fakebetas[fakebetas < 1.0 - fdr] = 0
    fakebetas[fakebetas > 0] = 1
    plateaus = calc_plateaus(fakebetas, edges=edges)
    for v,p in plateaus:
        if len(p) < mincluster:
            continue
        m = posteriors[list(p)].mean()
        if 1-m > fdr:
            continue
        print 'Cluster size: {0}\tmean:{1}'.format(len(p), m)
        for i in p:
            data[lookup[i]] = m


if __name__ == '__main__':
    parser = argparse.ArgumentParser(description='Loads a smoothed FDR result for an fMRI image and post-processes it.')

    parser.add_argument('indir', help='The directory where everything is stored.')
    parser.add_argument('--verbose', type=int, default=1, help='Print detailed progress information to the console. 0=none, 1=high-level only, 2=all details.')
    parser.add_argument('--missingval', type=float, default=0, help='The value used to signify a missing data point in the array. Typically this is zero.')
    parser.add_argument('--fdr_level', type=float, default=0.1, help='The false discovery rate level to use when reporting discoveries.')
    parser.add_argument('--mincluster', type=int, default=30, help='The minimum size a cluster must be to not be filtered out.')
    parser.add_argument('--plot', action='store_true', help='If specified, will generate 2d slice plots.')

    parser.set_defaults(plot=False)

    args = parser.parse_args()

    expdir = args.indir + ('' if args.indir.endswith('/') else '/')

    if args.verbose:
        print 'Loading raw data from {0}'.format(expdir+'data.nii.gz')

    data, coords = load_nii(expdir+'data.nii.gz')

    if args.verbose:
        print 'Loading edges from {0}'.format(expdir+'edges.csv')

    edges = load_edges(expdir+'edges.csv')

    if args.verbose:
        print 'Loading shape and lookup data from {0}'.format(expdir+'lookup.csv')

    shape, lookup = load_shape_lookup(expdir+'lookup.csv')
    smoothdata = np.zeros(shape)
    smoothposts = np.zeros(shape)
    smoothdiscs = np.zeros(shape)

    if args.verbose:
        print 'Original data shape: {0} Smoothed data shape: {1} (should be the same)'.format(data.shape, smoothdata.shape)


    if args.verbose:
        print 'Loading smoothed weights from {0}'.format(expdir + 'weights.csv')

    load_weights(expdir + 'weights.csv', smoothdata, lookup)

    if args.verbose:
        print 'Loading posteriors from {0}'.format(expdir + 'posteriors.csv')

    load_weights(expdir + 'posteriors.csv', smoothposts, lookup)

    if args.verbose:
        print 'Filtering down to a local FDR threshold of {0}'.format(args.fdr_level)

    print 'smoothdiscs size: {0}'.format(smoothdiscs.shape)
    thresholded_posterior_clusters(expdir + 'posteriors.csv', smoothdiscs, lookup, edges, args.fdr_level, args.mincluster)


    # if args.verbose:
    #     print 'Loading discoveries at a FDR level of {0}'.format(args.fdr_level)

    # load_weights(expdir + 'posteriors.csv', smoothdiscs, lookup, fdr=args.fdr_level)
    
    #plateaus = blob_fdr(expdir + 'weights.csv', expdir + 'posteriors.csv', smoothdiscs, lookup, edges, args.fdr_level)
    # if args.verbose:
    #     print '# blobs: {0}.\nSaving blob size vs. average posterior to {1}'.format(len(plateaus), expdir + 'img/plateau_sizes_vs_posteriors.pdf')
    # plot_plateau_sizes_vs_posteriors(plateaus, np.loadtxt(expdir+'posteriors.csv', delimiter=','), expdir + 'img/plateau_sizes_vs_posteriors.pdf')

    if args.verbose:
        print 'Saving .nii.gz versions'

    save_nii(expdir + 'weights.nii.gz', smoothdata, coords)
    save_nii(expdir + 'posteriors.nii.gz', smoothposts, coords)
    save_nii(expdir + 'thresholded_posterior_clusters.nii.gz', smoothdiscs, coords)

    # if not os.path.exists(expdir + 'thresholded_posterior_clusters/'):
    #     os.makedirs(expdir + 'thresholded_posterior_clusters/')

    # for i in xrange(smoothdiscs.shape[0]):
    #     np.savetxt(expdir + 'thresholded_posterior_clusters/{0}.csv'.format(i), smoothdiscs[i], delimiter=',')

    if args.plot:
        if args.verbose:
            print 'Plotting to {0}'.format(expdir + 'img/')

        data[np.where(data == args.missingval)] = np.nan
        smoothdata[np.where(data == args.missingval)] = np.nan
        smoothposts[np.where(data == args.missingval)] = np.nan


        # Create the image directory if it doesn't already exist
        if not os.path.exists(expdir + 'img/'):
            os.makedirs(expdir + 'img/')


        for i in xrange(3):
            # Create the axis directory if it doesn't already exist
            if not os.path.exists(expdir + 'img/' + str(i)):
                os.makedirs(expdir + 'img/' + str(i))
            # Plot the 3D image by taking 2D slices along the i'th axis
            plot_3d(expdir + 'img/' + str(i) + '/{0:04d}.pdf', data, weights=smoothdata, posteriors=smoothposts, discoveries=smoothdiscs, axis=i)


    
    
The diff you're trying to view is too large. Only the first 1000 changed files have been loaded.
Showing with 0 additions and 0 deletions (0 / 0 diffs computed)
swh spinner

Computing file changes ...

back to top

Software Heritage — Copyright (C) 2015–2025, The Software Heritage developers. License: GNU AGPLv3+.
The source code of Software Heritage itself is available on our development forge.
The source code files archived by Software Heritage are available under their own copyright and licenses.
Terms of use: Archive access, API— Contact— JavaScript license information— Web API