Revision 321027c1fe77f892f4ea07846aeae08cefbbb290 authored by Peter Zijlstra on 11 January 2017, 20:09:50 UTC, committed by Ingo Molnar on 14 January 2017, 09:56:11 UTC
Di Shen reported a race between two concurrent sys_perf_event_open()
calls where both try and move the same pre-existing software group
into a hardware context.

The problem is exactly that described in commit:

  f63a8daa5812 ("perf: Fix event->ctx locking")

... where, while we wait for a ctx->mutex acquisition, the event->ctx
relation can have changed under us.

That very same commit failed to recognise sys_perf_event_context() as an
external access vector to the events and thereby didn't apply the
established locking rules correctly.

So while one sys_perf_event_open() call is stuck waiting on
mutex_lock_double(), the other (which owns said locks) moves the group
about. So by the time the former sys_perf_event_open() acquires the
locks, the context we've acquired is stale (and possibly dead).

Apply the established locking rules as per perf_event_ctx_lock_nested()
to the mutex_lock_double() for the 'move_group' case. This obviously means
we need to validate state after we acquire the locks.

Reported-by: Di Shen (Keen Lab)
Tested-by: John Dias <joaodias@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Min Chong <mchong@google.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Fixes: f63a8daa5812 ("perf: Fix event->ctx locking")
Link: http://lkml.kernel.org/r/20170106131444.GZ3174@twins.programming.kicks-ass.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
1 parent 63cae12
Raw File
compress.c
/*
 * Cryptographic API.
 *
 * Compression operations.
 *
 * Copyright (c) 2002 James Morris <jmorris@intercode.com.au>
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License as published by the Free
 * Software Foundation; either version 2 of the License, or (at your option)
 * any later version.
 *
 */
#include <linux/types.h>
#include <linux/crypto.h>
#include <linux/errno.h>
#include <linux/string.h>
#include "internal.h"

static int crypto_compress(struct crypto_tfm *tfm,
                            const u8 *src, unsigned int slen,
                            u8 *dst, unsigned int *dlen)
{
	return tfm->__crt_alg->cra_compress.coa_compress(tfm, src, slen, dst,
	                                                 dlen);
}

static int crypto_decompress(struct crypto_tfm *tfm,
                             const u8 *src, unsigned int slen,
                             u8 *dst, unsigned int *dlen)
{
	return tfm->__crt_alg->cra_compress.coa_decompress(tfm, src, slen, dst,
	                                                   dlen);
}

int crypto_init_compress_ops(struct crypto_tfm *tfm)
{
	struct compress_tfm *ops = &tfm->crt_compress;

	ops->cot_compress = crypto_compress;
	ops->cot_decompress = crypto_decompress;

	return 0;
}
back to top