https://github.com/torvalds/linux
Revision 33df3a9cf925183a6a169bc3eff2bd0febd1298a authored by Darrick J. Wong on 08 December 2017, 03:07:27 UTC, committed by Darrick J. Wong on 21 December 2017, 16:48:38 UTC
Calling xfs_rmap_free with an unknown owner is supposed to remove any
rmaps covering that range regardless of owner.  This is used by the EFI
recovery code to say "we're freeing this, it mustn't be owned by
anything anymore", but for whatever reason xfs_free_ag_extent filters
them out.

Therefore, remove the filter and make xfs_rmap_unmap actually treat it
as a wildcard owner -- free anything that's already there, and if
there's no owner at all then that's fine too.

There are two existing callers of bmap_add_free that take care the rmap
deferred ops themselves and use OWN_UNKNOWN to skip the EFI-based rmap
cleanup; convert these to use OWN_NULL (via helpers), and now we really
require that an RUI (if any) gets added to the defer ops before any EFI.

Lastly, now that xfs_free_extent filters out OWN_NULL rmap free requests,
growfs will have to consult directly with the rmap to ensure that there
aren't any rmaps in the grown region.

Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
1 parent 0525e95
Raw File
Tip revision: 33df3a9cf925183a6a169bc3eff2bd0febd1298a authored by Darrick J. Wong on 08 December 2017, 03:07:27 UTC
xfs: always honor OWN_UNKNOWN rmap removal requests
Tip revision: 33df3a9
prime_numbers.c
#define pr_fmt(fmt) "prime numbers: " fmt "\n"

#include <linux/module.h>
#include <linux/mutex.h>
#include <linux/prime_numbers.h>
#include <linux/slab.h>

#define bitmap_size(nbits) (BITS_TO_LONGS(nbits) * sizeof(unsigned long))

struct primes {
	struct rcu_head rcu;
	unsigned long last, sz;
	unsigned long primes[];
};

#if BITS_PER_LONG == 64
static const struct primes small_primes = {
	.last = 61,
	.sz = 64,
	.primes = {
		BIT(2) |
		BIT(3) |
		BIT(5) |
		BIT(7) |
		BIT(11) |
		BIT(13) |
		BIT(17) |
		BIT(19) |
		BIT(23) |
		BIT(29) |
		BIT(31) |
		BIT(37) |
		BIT(41) |
		BIT(43) |
		BIT(47) |
		BIT(53) |
		BIT(59) |
		BIT(61)
	}
};
#elif BITS_PER_LONG == 32
static const struct primes small_primes = {
	.last = 31,
	.sz = 32,
	.primes = {
		BIT(2) |
		BIT(3) |
		BIT(5) |
		BIT(7) |
		BIT(11) |
		BIT(13) |
		BIT(17) |
		BIT(19) |
		BIT(23) |
		BIT(29) |
		BIT(31)
	}
};
#else
#error "unhandled BITS_PER_LONG"
#endif

static DEFINE_MUTEX(lock);
static const struct primes __rcu *primes = RCU_INITIALIZER(&small_primes);

static unsigned long selftest_max;

static bool slow_is_prime_number(unsigned long x)
{
	unsigned long y = int_sqrt(x);

	while (y > 1) {
		if ((x % y) == 0)
			break;
		y--;
	}

	return y == 1;
}

static unsigned long slow_next_prime_number(unsigned long x)
{
	while (x < ULONG_MAX && !slow_is_prime_number(++x))
		;

	return x;
}

static unsigned long clear_multiples(unsigned long x,
				     unsigned long *p,
				     unsigned long start,
				     unsigned long end)
{
	unsigned long m;

	m = 2 * x;
	if (m < start)
		m = roundup(start, x);

	while (m < end) {
		__clear_bit(m, p);
		m += x;
	}

	return x;
}

static bool expand_to_next_prime(unsigned long x)
{
	const struct primes *p;
	struct primes *new;
	unsigned long sz, y;

	/* Betrand's Postulate (or Chebyshev's theorem) states that if n > 3,
	 * there is always at least one prime p between n and 2n - 2.
	 * Equivalently, if n > 1, then there is always at least one prime p
	 * such that n < p < 2n.
	 *
	 * http://mathworld.wolfram.com/BertrandsPostulate.html
	 * https://en.wikipedia.org/wiki/Bertrand's_postulate
	 */
	sz = 2 * x;
	if (sz < x)
		return false;

	sz = round_up(sz, BITS_PER_LONG);
	new = kmalloc(sizeof(*new) + bitmap_size(sz),
		      GFP_KERNEL | __GFP_NOWARN);
	if (!new)
		return false;

	mutex_lock(&lock);
	p = rcu_dereference_protected(primes, lockdep_is_held(&lock));
	if (x < p->last) {
		kfree(new);
		goto unlock;
	}

	/* Where memory permits, track the primes using the
	 * Sieve of Eratosthenes. The sieve is to remove all multiples of known
	 * primes from the set, what remains in the set is therefore prime.
	 */
	bitmap_fill(new->primes, sz);
	bitmap_copy(new->primes, p->primes, p->sz);
	for (y = 2UL; y < sz; y = find_next_bit(new->primes, sz, y + 1))
		new->last = clear_multiples(y, new->primes, p->sz, sz);
	new->sz = sz;

	BUG_ON(new->last <= x);

	rcu_assign_pointer(primes, new);
	if (p != &small_primes)
		kfree_rcu((struct primes *)p, rcu);

unlock:
	mutex_unlock(&lock);
	return true;
}

static void free_primes(void)
{
	const struct primes *p;

	mutex_lock(&lock);
	p = rcu_dereference_protected(primes, lockdep_is_held(&lock));
	if (p != &small_primes) {
		rcu_assign_pointer(primes, &small_primes);
		kfree_rcu((struct primes *)p, rcu);
	}
	mutex_unlock(&lock);
}

/**
 * next_prime_number - return the next prime number
 * @x: the starting point for searching to test
 *
 * A prime number is an integer greater than 1 that is only divisible by
 * itself and 1.  The set of prime numbers is computed using the Sieve of
 * Eratoshenes (on finding a prime, all multiples of that prime are removed
 * from the set) enabling a fast lookup of the next prime number larger than
 * @x. If the sieve fails (memory limitation), the search falls back to using
 * slow trial-divison, up to the value of ULONG_MAX (which is reported as the
 * final prime as a sentinel).
 *
 * Returns: the next prime number larger than @x
 */
unsigned long next_prime_number(unsigned long x)
{
	const struct primes *p;

	rcu_read_lock();
	p = rcu_dereference(primes);
	while (x >= p->last) {
		rcu_read_unlock();

		if (!expand_to_next_prime(x))
			return slow_next_prime_number(x);

		rcu_read_lock();
		p = rcu_dereference(primes);
	}
	x = find_next_bit(p->primes, p->last, x + 1);
	rcu_read_unlock();

	return x;
}
EXPORT_SYMBOL(next_prime_number);

/**
 * is_prime_number - test whether the given number is prime
 * @x: the number to test
 *
 * A prime number is an integer greater than 1 that is only divisible by
 * itself and 1. Internally a cache of prime numbers is kept (to speed up
 * searching for sequential primes, see next_prime_number()), but if the number
 * falls outside of that cache, its primality is tested using trial-divison.
 *
 * Returns: true if @x is prime, false for composite numbers.
 */
bool is_prime_number(unsigned long x)
{
	const struct primes *p;
	bool result;

	rcu_read_lock();
	p = rcu_dereference(primes);
	while (x >= p->sz) {
		rcu_read_unlock();

		if (!expand_to_next_prime(x))
			return slow_is_prime_number(x);

		rcu_read_lock();
		p = rcu_dereference(primes);
	}
	result = test_bit(x, p->primes);
	rcu_read_unlock();

	return result;
}
EXPORT_SYMBOL(is_prime_number);

static void dump_primes(void)
{
	const struct primes *p;
	char *buf;

	buf = kmalloc(PAGE_SIZE, GFP_KERNEL);

	rcu_read_lock();
	p = rcu_dereference(primes);

	if (buf)
		bitmap_print_to_pagebuf(true, buf, p->primes, p->sz);
	pr_info("primes.{last=%lu, .sz=%lu, .primes[]=...x%lx} = %s",
		p->last, p->sz, p->primes[BITS_TO_LONGS(p->sz) - 1], buf);

	rcu_read_unlock();

	kfree(buf);
}

static int selftest(unsigned long max)
{
	unsigned long x, last;

	if (!max)
		return 0;

	for (last = 0, x = 2; x < max; x++) {
		bool slow = slow_is_prime_number(x);
		bool fast = is_prime_number(x);

		if (slow != fast) {
			pr_err("inconsistent result for is-prime(%lu): slow=%s, fast=%s!",
			       x, slow ? "yes" : "no", fast ? "yes" : "no");
			goto err;
		}

		if (!slow)
			continue;

		if (next_prime_number(last) != x) {
			pr_err("incorrect result for next-prime(%lu): expected %lu, got %lu",
			       last, x, next_prime_number(last));
			goto err;
		}
		last = x;
	}

	pr_info("selftest(%lu) passed, last prime was %lu", x, last);
	return 0;

err:
	dump_primes();
	return -EINVAL;
}

static int __init primes_init(void)
{
	return selftest(selftest_max);
}

static void __exit primes_exit(void)
{
	free_primes();
}

module_init(primes_init);
module_exit(primes_exit);

module_param_named(selftest, selftest_max, ulong, 0400);

MODULE_AUTHOR("Intel Corporation");
MODULE_LICENSE("GPL");
back to top