Revision 353ee6cd90b8e10ec132ce3d430319a7b29795f4 authored by Jonas Rembser on 17 April 2024, 17:24:06 UTC, committed by Jonas Rembser on 19 April 2024, 11:35:25 UTC
After commit a27e60a6d4f, it is not important anymore that only the
variables used by the expression are passed to RooFormula.

Removing the corresponding warnings helps to get rid of useless warnings
in the case where you want to try out variations of the formula that
omit certain terms, and in particular it helps in
`RooAbsData::reduce()`, where the formula is always passed all the
varaiables in the dataset, whether the reduction uses them or not.
1 parent 311b78e
Raw File
tcollex.cxx
// @(#)root/test:$Id$
// Author: Fons Rademakers   19/08/96

#include <stdlib.h>

#include "Riostream.h"
#include "TString.h"
#include "TObjString.h"
#include "TSortedList.h"
#include "TObjArray.h"
#include "TOrdCollection.h"
#include "THashTable.h"
#include "TBtree.h"
#include "TStopwatch.h"


// To focus on basic collection protocol, this sample program uses
// simple classes inheriting from TObject. One class, TObjString, is a
// collectable string class (a TString wrapped in a TObject) provided
// by the ROOT system. The other class we define below, is an integer
// wrapped in a TObject, just like TObjString.


// TObjNum is a simple container for an integer.
class TObjNum : public TObject {
private:
   int  num;

public:
   TObjNum(int i = 0) : num(i) { }
   ~TObjNum() override { Printf("~TObjNum = %d", num); }
   void    SetNum(int i) { num = i; }
   int     GetNum() { return num; }
   void    Print(Option_t *) const override { Printf("TObjNum = %d", num); }
   ULong_t Hash() const override { return num; }
   Bool_t  IsEqual(const TObject *obj) const override { return num == ((TObjNum*)obj)->num; }
   Bool_t  IsSortable() const override { return kTRUE; }
   Int_t   Compare(const TObject *obj) const override
   {
      if (num > ((TObjNum *)obj)->num)
         return 1;
      else if (num < ((TObjNum *)obj)->num)
         return -1;
      else
         return 0;
   }
};

void Test_TObjArray()
{

   Printf(
   "////////////////////////////////////////////////////////////////\n"
   "// Test of TObjArray                                          //\n"
   "////////////////////////////////////////////////////////////////"
   );

   // Array of capacity 10, Add() will automatically expand the array if necessary.
   TObjArray  a(10);

   Printf("Filling TObjArray");
   a.Add(new TObjNum(1));            // add at next free slot, pos 0
   a[1] = new TObjNum(2);            // use operator[], put at pos 1
   TObjNum *n3 = new TObjNum(3);
   a.AddAt(n3,2);                    // add at position 2
   a.Add(new TObjNum(4));            // add at next free slot, pos 3
   a.AddLast(new TObjNum(10));       // add at pos 4
   TObjNum n6(6);                    // stack based TObjNum
   a.AddAt(&n6,5);                   // add at pos 5
   a[6] = new TObjNum(5);            // add at respective positions
   a[7] = new TObjNum(8);
   a[8] = new TObjNum(7);
//   a[10] = &n6;                    // gives out-of-bound error

   Printf("Print array");
   a.Print();                        // invoke Print() of all objects

   Printf("Sort array");
   a.Sort();
   for (int i = 0; i < a.Capacity(); i++)  // typical way of iterating over array
      if (a[i])
         a[i]->Print();      // can also use operator[] to access elements
      else
         Printf("%d empty slot", i);

   Printf("Use binary search to get position of number 6");
   Printf("6 is at position %d", a.BinarySearch(&n6));

   Printf("Find number before 6");
   a.Before(&n6)->Print();

   Printf("Find number after 3");
   a.After(n3)->Print();

   Printf("Remove 3 and print list again");
   a.Remove(n3);
   delete n3;
   a.Print();

   Printf("Iterate forward over list and remove 4 and 7");

   // TIter encapsulates the actual class iterator. The type of iterator
   // used depends on the type of the collection.
   TIter next(&a);

   TObjNum *obj;
   while ((obj = (TObjNum*)next()))     // iterator skips empty slots
      if (obj->GetNum() == 4) {
         a.Remove(obj);
         delete obj;
      }

   // Reset the iterator and loop again
   next.Reset();
   while ((obj = (TObjNum*)next()))
      if (obj->GetNum() == 7) {
         a.Remove(obj);
         delete obj;
      }

   Printf("Iterate backward over list and remove 2");
   TIter next1(&a, kIterBackward);
   while ((obj = (TObjNum*)next1()))
      if (obj->GetNum() == 2) {
         a.Remove(obj);
         delete obj;
      }

   Printf("Delete remainder of list: 1,5,8,10 (6 not deleted since not on heap)");

   // Delete heap objects and clear list. Attention: do this only when you
   // own all objects stored in the collection. When you stored aliases to
   // the actual objects (i.e. you did not create the objects) use Clear()
   // instead.
   a.Delete();

   Printf("Delete stack based objects (6)");
}

void Test_TOrdCollection()
{
   Printf(
   "////////////////////////////////////////////////////////////////\n"
   "// Test of TOrdCollection                                     //\n"
   "////////////////////////////////////////////////////////////////"
   );

   // Create collection with default size, Add() will automatically expand
   // the collection if necessary.
   TOrdCollection  c;

   Printf("Filling TOrdCollection");
   c.Add(new TObjString("anton"));      // add at next free slot, pos 0
   c.AddFirst(new TObjString("bobo"));  // put at pos 0, bump anton to pos 1
   TObjString *s3 = new TObjString("damon");
   c.AddAt(s3,1);                       // add at position 1, bump anton to pos 2
   c.Add(new TObjString("cassius"));    // add at next free slot, pos 3
   c.AddLast(new TObjString("enigma")); // add at pos 4
   TObjString s6("fons");               // stack based TObjString
   c.AddBefore(s3,&s6);                 // add at pos 1
   c.AddAfter(s3, new TObjString("gaia"));

   Printf("Print collection");
   c.Print();                           // invoke Print() of all objects

   Printf("Sort collection");
   c.Sort();
   c.Print();

   Printf("Use binary search to get position of string damon");
   Printf("damon is at position %d", c.BinarySearch(s3));

   Printf("Find str before fons");
   c.Before(&s6)->Print();

   Printf("Find string after damon");
   c.After(s3)->Print();

   Printf("Remove damon and print list again");
   c.Remove(s3);
   delete s3;
   c.Print();

   Printf("Iterate forward over list and remove cassius");
   TObjString *objs;
   TIter next(&c);
   while ((objs = (TObjString*)next()))     // iterator skips empty slots
      if (objs->String() == "cassius") {
         c.Remove(objs);
         delete objs;
      }

   Printf("Iterate backward over list and remove gaia");
   TIter next1(&c, kIterBackward);
   while ((objs = (TObjString*)next1()))
      if (objs->String() == "gaia") {
         c.Remove(objs);
         delete objs;
      }

   Printf("Delete remainder of list: anton,bobo,enigma (fons not deleted since not on heap)");
   c.Delete();                        // delete heap objects and clear list

   Printf("Delete stack based objects (fons)");
}

void Test_TList()
{
   Printf(
   "////////////////////////////////////////////////////////////////\n"
   "// Test of TList                                              //\n"
   "////////////////////////////////////////////////////////////////"
   );

   // Create a doubly linked list.
   TList l;

   Printf("Filling TList");
   TObjNum *n3 = new TObjNum(3);
   l.Add(n3);
   l.AddBefore(n3, new TObjNum(5));
   l.AddAfter(n3, new TObjNum(2));
   l.Add(new TObjNum(1));
   l.AddBefore(n3, new TObjNum(4));
   TObjNum n6(6);                     // stack based TObjNum
   l.AddFirst(&n6);

   Printf("Print list");
   l.Print();

   Printf("Remove 3 and print list again");
   l.Remove(n3);
   delete n3;
   l.Print();

   Printf("Iterate forward over list and remove 4");
   TObjNum *obj;
   TIter next(&l);
   while ((obj = (TObjNum*)next()))
      if (obj->GetNum() == 4) l.Remove(obj);

   Printf("Iterate backward over list and remove 2");
   TIter next1(&l, kIterBackward);
   while ((obj = (TObjNum*)next1()))
      if (obj->GetNum() == 2) {
         l.Remove(obj);
         delete obj;
      }

   Printf("Delete remainder of list: 1, 5 (6 not deleted since not on heap)");
   l.Delete();

   Printf("Delete stack based objects (6)");
}

void Test_TSortedList()
{
   Printf(
   "////////////////////////////////////////////////////////////////\n"
   "// Test of TSortedList                                        //\n"
   "////////////////////////////////////////////////////////////////"
   );

   // Create a sorted doubly linked list.
   TSortedList sl;

   Printf("Filling TSortedList");
   TObjNum *n3 = new TObjNum(3);
   sl.Add(n3);
   sl.AddBefore(n3,new TObjNum(5));
   sl.AddAfter(n3, new TObjNum(2));
   sl.Add(new TObjNum(1));
   sl.AddBefore(n3, new TObjNum(4));
   TObjNum n6(6);                     // stack based TObjNum
   sl.AddFirst(&n6);

   Printf("Print list");
   sl.Print();

   Printf("Delete all heap based objects (6 not deleted since not on heap)");
   sl.Delete();

   Printf("Delete stack based objects (6)");
}

void Test_THashTable()
{
   Printf(
   "////////////////////////////////////////////////////////////////\n"
   "// Test of THashTable                                         //\n"
   "////////////////////////////////////////////////////////////////"
   );

   int i;

   // Create a hash table with an initial size of 20 (actually the next prime
   // above 20). No automatic rehashing.
   THashTable ht(20);

   Printf("Filling THashTable");
   Printf("Number of slots before filling: %d", ht.Capacity());
   for (i = 0; i < 1000; i++)
      ht.Add(new TObject);

   Printf("Average collisions: %f", ht.AverageCollisions());

   // rehash the hash table to reduce the collission rate
   ht.Rehash(ht.GetSize());

   Printf("Number of slots after rehash: %d", ht.Capacity());
   Printf("Average collisions after rehash: %f", ht.AverageCollisions());

   ht.Delete();

   // Create a hash table and trigger automatic rehashing when average
   // collision rate becomes larger than 5.
   THashTable ht2(20,5);

   Printf("Filling THashTable with automatic rehash when AverageCollisions>5");
   Printf("Number of slots before filling: %d", ht2.Capacity());
   for (i = 0; i < 1000; i++)
      ht2.Add(new TObject);

   Printf("Number of slots after filling: %d", ht2.Capacity());
   Printf("Average collisions: %f", ht2.AverageCollisions());

   Printf("\nDelete all heap based objects");
   ht2.Delete();
}

void Test_TBtree()
{
   Printf(
   "////////////////////////////////////////////////////////////////\n"
   "// Test of TBtree                                             //\n"
   "////////////////////////////////////////////////////////////////"
   );
   TStopwatch timer;      // create a timer
   TBtree     l;          // btree of order 3

   Printf("Filling TBtree");

   TObjNum *n3 = new TObjNum(3);
   l.Add(n3);
   l.AddBefore(n3,new TObjNum(5));
   l.AddAfter(n3, new TObjNum(2));
   l.Add(new TObjNum(1));
   l.AddBefore(n3, new TObjNum(4));
   TObjNum n6(6);                     // stack based TObjNum
   l.AddFirst(&n6);

   timer.Start();
   for (int i = 0; i < 50; i++)
      l.Add(new TObjNum(i));
   timer.Print();

   Printf("Print TBtree");
   l.Print();

   Printf("Remove 3 and print TBtree again");
   l.Remove(n3);
   l.Print();

   Printf("Iterate forward over TBtree and remove 4 from tree");
   TIter next(&l);
   TObjNum *obj;
   while ((obj = (TObjNum*)next()))
      if (obj->GetNum() == 4) l.Remove(obj);

   Printf("Iterate backward over TBtree and remove 2 from tree");
   TIter next1(&l, kIterBackward);
   while ((obj = (TObjNum*)next1()))
      if (obj->GetNum() == 2) l.Remove(obj);

   Printf("\nDelete all heap based objects");
   l.Delete();

   Printf("Delete stack based objects (6)");
}


int tcollex() {
   Test_TObjArray();
   Test_TOrdCollection();
   Test_TList();
   Test_TSortedList();
   Test_THashTable();
   Test_TBtree();

   return 0;
}

#ifndef __CINT__
int main() {
   return tcollex();
}
#endif
back to top