Revision 35991652baa12ff3d0e420c0d0cb2ad9f7076e5b authored by Mikulas Patocka on 02 June 2012, 23:29:58 UTC, committed by Alasdair G Kergon on 02 June 2012, 23:29:58 UTC
After the failure of a group of paths, any alternative paths that
need initialising do not become available until further I/O is sent to
the device.  Until this has happened, ioctls return -EAGAIN.

With this patch, new paths are made available in response to an ioctl
too.  The processing of the ioctl gets delayed until this has happened.

Instead of returning an error, we submit a work item to kmultipathd
(that will potentially activate the new path) and retry in ten
milliseconds.

Note that the patch doesn't retry an ioctl if the ioctl itself fails due
to a path failure.  Such retries should be handled intelligently by the
code that generated the ioctl in the first place, noting that some SCSI
commands should not be retried because they are not idempotent (XOR write
commands).  For commands that could be retried, there is a danger that
if the device rejected the SCSI command, the path could be errorneously
marked as failed, and the request would be retried on another path which
might fail too.  It can be determined if the failure happens on the
device or on the SCSI controller, but there is no guarantee that all
SCSI drivers set these flags correctly.

Signed-off-by: Mikulas Patocka <mpatocka@redhat.com>
Signed-off-by: Alasdair G Kergon <agk@redhat.com>
1 parent f220fd4
Raw File
compr_rubin.c
/*
 * JFFS2 -- Journalling Flash File System, Version 2.
 *
 * Copyright © 2001-2007 Red Hat, Inc.
 * Copyright © 2004-2010 David Woodhouse <dwmw2@infradead.org>
 *
 * Created by Arjan van de Ven <arjanv@redhat.com>
 *
 * For licensing information, see the file 'LICENCE' in this directory.
 *
 */

#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

#include <linux/string.h>
#include <linux/types.h>
#include <linux/jffs2.h>
#include <linux/errno.h>
#include "compr.h"


#define RUBIN_REG_SIZE   16
#define UPPER_BIT_RUBIN    (((long) 1)<<(RUBIN_REG_SIZE-1))
#define LOWER_BITS_RUBIN   ((((long) 1)<<(RUBIN_REG_SIZE-1))-1)


#define BIT_DIVIDER_MIPS 1043
static int bits_mips[8] = { 277, 249, 290, 267, 229, 341, 212, 241};

struct pushpull {
	unsigned char *buf;
	unsigned int buflen;
	unsigned int ofs;
	unsigned int reserve;
};

struct rubin_state {
	unsigned long p;
	unsigned long q;
	unsigned long rec_q;
	long bit_number;
	struct pushpull pp;
	int bit_divider;
	int bits[8];
};

static inline void init_pushpull(struct pushpull *pp, char *buf,
				 unsigned buflen, unsigned ofs,
				 unsigned reserve)
{
	pp->buf = buf;
	pp->buflen = buflen;
	pp->ofs = ofs;
	pp->reserve = reserve;
}

static inline int pushbit(struct pushpull *pp, int bit, int use_reserved)
{
	if (pp->ofs >= pp->buflen - (use_reserved?0:pp->reserve))
		return -ENOSPC;

	if (bit)
		pp->buf[pp->ofs >> 3] |= (1<<(7-(pp->ofs & 7)));
	else
		pp->buf[pp->ofs >> 3] &= ~(1<<(7-(pp->ofs & 7)));

	pp->ofs++;

	return 0;
}

static inline int pushedbits(struct pushpull *pp)
{
	return pp->ofs;
}

static inline int pullbit(struct pushpull *pp)
{
	int bit;

	bit = (pp->buf[pp->ofs >> 3] >> (7-(pp->ofs & 7))) & 1;

	pp->ofs++;
	return bit;
}

static inline int pulledbits(struct pushpull *pp)
{
	return pp->ofs;
}


static void init_rubin(struct rubin_state *rs, int div, int *bits)
{
	int c;

	rs->q = 0;
	rs->p = (long) (2 * UPPER_BIT_RUBIN);
	rs->bit_number = (long) 0;
	rs->bit_divider = div;

	for (c=0; c<8; c++)
		rs->bits[c] = bits[c];
}


static int encode(struct rubin_state *rs, long A, long B, int symbol)
{

	long i0, i1;
	int ret;

	while ((rs->q >= UPPER_BIT_RUBIN) ||
	       ((rs->p + rs->q) <= UPPER_BIT_RUBIN)) {
		rs->bit_number++;

		ret = pushbit(&rs->pp, (rs->q & UPPER_BIT_RUBIN) ? 1 : 0, 0);
		if (ret)
			return ret;
		rs->q &= LOWER_BITS_RUBIN;
		rs->q <<= 1;
		rs->p <<= 1;
	}
	i0 = A * rs->p / (A + B);
	if (i0 <= 0)
		i0 = 1;

	if (i0 >= rs->p)
		i0 = rs->p - 1;

	i1 = rs->p - i0;

	if (symbol == 0)
		rs->p = i0;
	else {
		rs->p = i1;
		rs->q += i0;
	}
	return 0;
}


static void end_rubin(struct rubin_state *rs)
{

	int i;

	for (i = 0; i < RUBIN_REG_SIZE; i++) {
		pushbit(&rs->pp, (UPPER_BIT_RUBIN & rs->q) ? 1 : 0, 1);
		rs->q &= LOWER_BITS_RUBIN;
		rs->q <<= 1;
	}
}


static void init_decode(struct rubin_state *rs, int div, int *bits)
{
	init_rubin(rs, div, bits);

	/* behalve lower */
	rs->rec_q = 0;

	for (rs->bit_number = 0; rs->bit_number++ < RUBIN_REG_SIZE;
	     rs->rec_q = rs->rec_q * 2 + (long) (pullbit(&rs->pp)))
		;
}

static void __do_decode(struct rubin_state *rs, unsigned long p,
			unsigned long q)
{
	register unsigned long lower_bits_rubin = LOWER_BITS_RUBIN;
	unsigned long rec_q;
	int c, bits = 0;

	/*
	 * First, work out how many bits we need from the input stream.
	 * Note that we have already done the initial check on this
	 * loop prior to calling this function.
	 */
	do {
		bits++;
		q &= lower_bits_rubin;
		q <<= 1;
		p <<= 1;
	} while ((q >= UPPER_BIT_RUBIN) || ((p + q) <= UPPER_BIT_RUBIN));

	rs->p = p;
	rs->q = q;

	rs->bit_number += bits;

	/*
	 * Now get the bits.  We really want this to be "get n bits".
	 */
	rec_q = rs->rec_q;
	do {
		c = pullbit(&rs->pp);
		rec_q &= lower_bits_rubin;
		rec_q <<= 1;
		rec_q += c;
	} while (--bits);
	rs->rec_q = rec_q;
}

static int decode(struct rubin_state *rs, long A, long B)
{
	unsigned long p = rs->p, q = rs->q;
	long i0, threshold;
	int symbol;

	if (q >= UPPER_BIT_RUBIN || ((p + q) <= UPPER_BIT_RUBIN))
		__do_decode(rs, p, q);

	i0 = A * rs->p / (A + B);
	if (i0 <= 0)
		i0 = 1;

	if (i0 >= rs->p)
		i0 = rs->p - 1;

	threshold = rs->q + i0;
	symbol = rs->rec_q >= threshold;
	if (rs->rec_q >= threshold) {
		rs->q += i0;
		i0 = rs->p - i0;
	}

	rs->p = i0;

	return symbol;
}



static int out_byte(struct rubin_state *rs, unsigned char byte)
{
	int i, ret;
	struct rubin_state rs_copy;
	rs_copy = *rs;

	for (i=0; i<8; i++) {
		ret = encode(rs, rs->bit_divider-rs->bits[i],
			     rs->bits[i], byte & 1);
		if (ret) {
			/* Failed. Restore old state */
			*rs = rs_copy;
			return ret;
		}
		byte >>= 1 ;
	}
	return 0;
}

static int in_byte(struct rubin_state *rs)
{
	int i, result = 0, bit_divider = rs->bit_divider;

	for (i = 0; i < 8; i++)
		result |= decode(rs, bit_divider - rs->bits[i],
				 rs->bits[i]) << i;

	return result;
}



static int rubin_do_compress(int bit_divider, int *bits, unsigned char *data_in,
			     unsigned char *cpage_out, uint32_t *sourcelen,
			     uint32_t *dstlen)
	{
	int outpos = 0;
	int pos=0;
	struct rubin_state rs;

	init_pushpull(&rs.pp, cpage_out, *dstlen * 8, 0, 32);

	init_rubin(&rs, bit_divider, bits);

	while (pos < (*sourcelen) && !out_byte(&rs, data_in[pos]))
		pos++;

	end_rubin(&rs);

	if (outpos > pos) {
		/* We failed */
		return -1;
	}

	/* Tell the caller how much we managed to compress,
	 * and how much space it took */

	outpos = (pushedbits(&rs.pp)+7)/8;

	if (outpos >= pos)
		return -1; /* We didn't actually compress */
	*sourcelen = pos;
	*dstlen = outpos;
	return 0;
}
#if 0
/* _compress returns the compressed size, -1 if bigger */
int jffs2_rubinmips_compress(unsigned char *data_in, unsigned char *cpage_out,
		   uint32_t *sourcelen, uint32_t *dstlen)
{
	return rubin_do_compress(BIT_DIVIDER_MIPS, bits_mips, data_in,
				 cpage_out, sourcelen, dstlen);
}
#endif
static int jffs2_dynrubin_compress(unsigned char *data_in,
				   unsigned char *cpage_out,
				   uint32_t *sourcelen, uint32_t *dstlen)
{
	int bits[8];
	unsigned char histo[256];
	int i;
	int ret;
	uint32_t mysrclen, mydstlen;

	mysrclen = *sourcelen;
	mydstlen = *dstlen - 8;

	if (*dstlen <= 12)
		return -1;

	memset(histo, 0, 256);
	for (i=0; i<mysrclen; i++)
		histo[data_in[i]]++;
	memset(bits, 0, sizeof(int)*8);
	for (i=0; i<256; i++) {
		if (i&128)
			bits[7] += histo[i];
		if (i&64)
			bits[6] += histo[i];
		if (i&32)
			bits[5] += histo[i];
		if (i&16)
			bits[4] += histo[i];
		if (i&8)
			bits[3] += histo[i];
		if (i&4)
			bits[2] += histo[i];
		if (i&2)
			bits[1] += histo[i];
		if (i&1)
			bits[0] += histo[i];
	}

	for (i=0; i<8; i++) {
		bits[i] = (bits[i] * 256) / mysrclen;
		if (!bits[i]) bits[i] = 1;
		if (bits[i] > 255) bits[i] = 255;
		cpage_out[i] = bits[i];
	}

	ret = rubin_do_compress(256, bits, data_in, cpage_out+8, &mysrclen,
				&mydstlen);
	if (ret)
		return ret;

	/* Add back the 8 bytes we took for the probabilities */
	mydstlen += 8;

	if (mysrclen <= mydstlen) {
		/* We compressed */
		return -1;
	}

	*sourcelen = mysrclen;
	*dstlen = mydstlen;
	return 0;
}

static void rubin_do_decompress(int bit_divider, int *bits,
				unsigned char *cdata_in, 
				unsigned char *page_out, uint32_t srclen,
				uint32_t destlen)
{
	int outpos = 0;
	struct rubin_state rs;

	init_pushpull(&rs.pp, cdata_in, srclen, 0, 0);
	init_decode(&rs, bit_divider, bits);

	while (outpos < destlen)
		page_out[outpos++] = in_byte(&rs);
}


static int jffs2_rubinmips_decompress(unsigned char *data_in,
				      unsigned char *cpage_out,
				      uint32_t sourcelen, uint32_t dstlen)
{
	rubin_do_decompress(BIT_DIVIDER_MIPS, bits_mips, data_in,
			    cpage_out, sourcelen, dstlen);
	return 0;
}

static int jffs2_dynrubin_decompress(unsigned char *data_in,
				     unsigned char *cpage_out,
				     uint32_t sourcelen, uint32_t dstlen)
{
	int bits[8];
	int c;

	for (c=0; c<8; c++)
		bits[c] = data_in[c];

	rubin_do_decompress(256, bits, data_in+8, cpage_out, sourcelen-8,
			    dstlen);
	return 0;
}

static struct jffs2_compressor jffs2_rubinmips_comp = {
	.priority = JFFS2_RUBINMIPS_PRIORITY,
	.name = "rubinmips",
	.compr = JFFS2_COMPR_DYNRUBIN,
	.compress = NULL, /*&jffs2_rubinmips_compress,*/
	.decompress = &jffs2_rubinmips_decompress,
#ifdef JFFS2_RUBINMIPS_DISABLED
	.disabled = 1,
#else
	.disabled = 0,
#endif
};

int jffs2_rubinmips_init(void)
{
	return jffs2_register_compressor(&jffs2_rubinmips_comp);
}

void jffs2_rubinmips_exit(void)
{
	jffs2_unregister_compressor(&jffs2_rubinmips_comp);
}

static struct jffs2_compressor jffs2_dynrubin_comp = {
	.priority = JFFS2_DYNRUBIN_PRIORITY,
	.name = "dynrubin",
	.compr = JFFS2_COMPR_RUBINMIPS,
	.compress = jffs2_dynrubin_compress,
	.decompress = &jffs2_dynrubin_decompress,
#ifdef JFFS2_DYNRUBIN_DISABLED
	.disabled = 1,
#else
	.disabled = 0,
#endif
};

int jffs2_dynrubin_init(void)
{
	return jffs2_register_compressor(&jffs2_dynrubin_comp);
}

void jffs2_dynrubin_exit(void)
{
	jffs2_unregister_compressor(&jffs2_dynrubin_comp);
}
back to top