https://github.com/jarlg/Yoneda-Ext
Revision 38613d2c184a50be5001e4f533575fea137374b7 authored by Jarl G. Taxeraas Flaten on 22 February 2023, 14:26:53 UTC, committed by Jarl G. Taxeraas Flaten on 22 February 2023, 14:26:53 UTC
1 parent c853817
Tip revision: 38613d2c184a50be5001e4f533575fea137374b7 authored by Jarl G. Taxeraas Flaten on 22 February 2023, 14:26:53 UTC
wip
wip
Tip revision: 38613d2
Lemmas.v
From HoTT Require Import Basics Types Pointed WildCat
ExactSequence AbGroups AbSES.
(** This should be placed in Homotopy.ExactSequence. *)
Definition isexact_homotopic_if n {F X Y : pType}
{i i' : F ->* X} (h : i' ==* i)
{f f' : X ->* Y} (k : f' ==* f)
`{IsExact n F X Y i f}
: IsExact n i' f'.
Proof.
refine (isexact_homotopic_i n h _).
exact (isexact_homotopic_f n _ k).
Defined.
(** This should be placed in AbSES.Pullback. *)
Definition abses_pullback_trivial_factors_projection `{Univalence}
{B B' A : AbGroup} {g : B' $-> B} {E : AbSES B A}
: pt = abses_pullback g E -> exists phi, g = projection E $o phi.
Proof.
equiv_intros (equiv_path_abses (E:=pt) (F:=abses_pullback g E)) p.
destruct p as [phi [p q]].
exists (grp_pullback_pr1 _ _ $o phi $o ab_biprod_inr).
apply equiv_path_grouphomomorphism; intro b'; symmetry.
refine (right_square (abses_pullback_morphism E g) _ @ _).
exact (ap g (q _)^).
Defined.

Computing file changes ...