Revision 3e1a0699095803e53072699a4a1485af7744601d authored by Joe Thornber on 03 March 2014, 16:03:26 UTC, committed by Mike Snitzer on 05 March 2014, 20:26:58 UTC
Ideally a thin pool would never run out of data space; the low water
mark would trigger userland to extend the pool before we completely run
out of space.  However, many small random IOs to unprovisioned space can
consume data space at an alarming rate.  Adjust your low water mark if
you're frequently seeing "out-of-data-space" mode.

Before this fix, if data space ran out the pool would be put in
PM_READ_ONLY mode which also aborted the pool's current metadata
transaction (data loss for any changes in the transaction).  This had a
side-effect of needlessly compromising data consistency.  And retry of
queued unserviceable bios, once the data pool was resized, could
initiate changes to potentially inconsistent pool metadata.

Now when the pool's data space is exhausted transition to a new pool
mode (PM_OUT_OF_DATA_SPACE) that allows metadata to be changed but data
may not be allocated.  This allows users to remove thin volumes or
discard data to recover data space.

The pool is no longer put in PM_READ_ONLY mode in response to the pool
running out of data space.  And PM_READ_ONLY mode no longer aborts the
pool's current metadata transaction.  Also, set_pool_mode() will now
notify userspace when the pool mode is changed.

Signed-off-by: Joe Thornber <ejt@redhat.com>
Signed-off-by: Mike Snitzer <snitzer@redhat.com>
1 parent 07f2b6e
Raw File
88pm800.c
/*
 * Regulators driver for Marvell 88PM800
 *
 * Copyright (C) 2012 Marvell International Ltd.
 * Joseph(Yossi) Hanin <yhanin@marvell.com>
 * Yi Zhang <yizhang@marvell.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/init.h>
#include <linux/err.h>
#include <linux/regmap.h>
#include <linux/regulator/driver.h>
#include <linux/regulator/machine.h>
#include <linux/mfd/88pm80x.h>
#include <linux/delay.h>
#include <linux/io.h>
#include <linux/of.h>
#include <linux/regulator/of_regulator.h>

/* LDO1 with DVC[0..3] */
#define PM800_LDO1_VOUT		(0x08) /* VOUT1 */
#define PM800_LDO1_VOUT_2	(0x09)
#define PM800_LDO1_VOUT_3	(0x0A)
#define PM800_LDO2_VOUT		(0x0B)
#define PM800_LDO3_VOUT		(0x0C)
#define PM800_LDO4_VOUT		(0x0D)
#define PM800_LDO5_VOUT		(0x0E)
#define PM800_LDO6_VOUT		(0x0F)
#define PM800_LDO7_VOUT		(0x10)
#define PM800_LDO8_VOUT		(0x11)
#define PM800_LDO9_VOUT		(0x12)
#define PM800_LDO10_VOUT	(0x13)
#define PM800_LDO11_VOUT	(0x14)
#define PM800_LDO12_VOUT	(0x15)
#define PM800_LDO13_VOUT	(0x16)
#define PM800_LDO14_VOUT	(0x17)
#define PM800_LDO15_VOUT	(0x18)
#define PM800_LDO16_VOUT	(0x19)
#define PM800_LDO17_VOUT	(0x1A)
#define PM800_LDO18_VOUT	(0x1B)
#define PM800_LDO19_VOUT	(0x1C)

/* BUCK1 with DVC[0..3] */
#define PM800_BUCK1		(0x3C)
#define PM800_BUCK1_1		(0x3D)
#define PM800_BUCK1_2		(0x3E)
#define PM800_BUCK1_3		(0x3F)
#define PM800_BUCK2		(0x40)
#define PM800_BUCK3		(0x41)
#define PM800_BUCK3		(0x41)
#define PM800_BUCK4		(0x42)
#define PM800_BUCK4_1		(0x43)
#define PM800_BUCK4_2		(0x44)
#define PM800_BUCK4_3		(0x45)
#define PM800_BUCK5		(0x46)

#define PM800_BUCK_ENA		(0x50)
#define PM800_LDO_ENA1_1	(0x51)
#define PM800_LDO_ENA1_2	(0x52)
#define PM800_LDO_ENA1_3	(0x53)

#define PM800_LDO_ENA2_1	(0x56)
#define PM800_LDO_ENA2_2	(0x57)
#define PM800_LDO_ENA2_3	(0x58)

#define PM800_BUCK1_MISC1	(0x78)
#define PM800_BUCK3_MISC1	(0x7E)
#define PM800_BUCK4_MISC1	(0x81)
#define PM800_BUCK5_MISC1	(0x84)

struct pm800_regulator_info {
	struct regulator_desc desc;
	int max_ua;
};

struct pm800_regulators {
	struct regulator_dev *regulators[PM800_ID_RG_MAX];
	struct pm80x_chip *chip;
	struct regmap *map;
};

/*
 * vreg - the buck regs string.
 * ereg - the string for the enable register.
 * ebit - the bit number in the enable register.
 * amax - the current
 * Buck has 2 kinds of voltage steps. It is easy to find voltage by ranges,
 * not the constant voltage table.
 * n_volt - Number of available selectors
 */
#define PM800_BUCK(vreg, ereg, ebit, amax, volt_ranges, n_volt)		\
{									\
	.desc	= {							\
		.name	= #vreg,					\
		.ops	= &pm800_volt_range_ops,			\
		.type	= REGULATOR_VOLTAGE,				\
		.id	= PM800_ID_##vreg,				\
		.owner	= THIS_MODULE,					\
		.n_voltages		= n_volt,			\
		.linear_ranges		= volt_ranges,			\
		.n_linear_ranges	= ARRAY_SIZE(volt_ranges),	\
		.vsel_reg		= PM800_##vreg,			\
		.vsel_mask		= 0x7f,				\
		.enable_reg		= PM800_##ereg,			\
		.enable_mask		= 1 << (ebit),			\
	},								\
	.max_ua		= (amax),					\
}

/*
 * vreg - the LDO regs string
 * ereg -  the string for the enable register.
 * ebit - the bit number in the enable register.
 * amax - the current
 * volt_table - the LDO voltage table
 * For all the LDOes, there are too many ranges. Using volt_table will be
 * simpler and faster.
 */
#define PM800_LDO(vreg, ereg, ebit, amax, ldo_volt_table)		\
{									\
	.desc	= {							\
		.name	= #vreg,					\
		.ops	= &pm800_volt_table_ops,			\
		.type	= REGULATOR_VOLTAGE,				\
		.id	= PM800_ID_##vreg,				\
		.owner	= THIS_MODULE,					\
		.n_voltages = ARRAY_SIZE(ldo_volt_table),		\
		.vsel_reg	= PM800_##vreg##_VOUT,			\
		.vsel_mask	= 0x1f,					\
		.enable_reg	= PM800_##ereg,				\
		.enable_mask	= 1 << (ebit),				\
		.volt_table	= ldo_volt_table,			\
	},								\
	.max_ua		= (amax),					\
}

/* Ranges are sorted in ascending order. */
static const struct regulator_linear_range buck1_volt_range[] = {
	REGULATOR_LINEAR_RANGE(600000, 0, 0x4f, 12500),
	REGULATOR_LINEAR_RANGE(1600000, 0x50, 0x54, 50000),
};

/* BUCK 2~5 have same ranges. */
static const struct regulator_linear_range buck2_5_volt_range[] = {
	REGULATOR_LINEAR_RANGE(600000, 0, 0x4f, 12500),
	REGULATOR_LINEAR_RANGE(1600000, 0x50, 0x72, 50000),
};

static const unsigned int ldo1_volt_table[] = {
	600000,  650000,  700000,  750000,  800000,  850000,  900000,  950000,
	1000000, 1050000, 1100000, 1150000, 1200000, 1300000, 1400000, 1500000,
};

static const unsigned int ldo2_volt_table[] = {
	1700000, 1800000, 1900000, 2000000, 2100000, 2500000, 2700000, 2800000,
};

/* LDO 3~17 have same voltage table. */
static const unsigned int ldo3_17_volt_table[] = {
	1200000, 1250000, 1700000, 1800000, 1850000, 1900000, 2500000, 2600000,
	2700000, 2750000, 2800000, 2850000, 2900000, 3000000, 3100000, 3300000,
};

/* LDO 18~19 have same voltage table. */
static const unsigned int ldo18_19_volt_table[] = {
	1700000, 1800000, 1900000, 2500000, 2800000, 2900000, 3100000, 3300000,
};

static int pm800_get_current_limit(struct regulator_dev *rdev)
{
	struct pm800_regulator_info *info = rdev_get_drvdata(rdev);

	return info->max_ua;
}

static struct regulator_ops pm800_volt_range_ops = {
	.list_voltage = regulator_list_voltage_linear_range,
	.map_voltage = regulator_map_voltage_linear_range,
	.set_voltage_sel = regulator_set_voltage_sel_regmap,
	.get_voltage_sel = regulator_get_voltage_sel_regmap,
	.enable = regulator_enable_regmap,
	.disable = regulator_disable_regmap,
	.is_enabled = regulator_is_enabled_regmap,
	.get_current_limit = pm800_get_current_limit,
};

static struct regulator_ops pm800_volt_table_ops = {
	.list_voltage = regulator_list_voltage_table,
	.map_voltage = regulator_map_voltage_iterate,
	.set_voltage_sel = regulator_set_voltage_sel_regmap,
	.get_voltage_sel = regulator_get_voltage_sel_regmap,
	.enable = regulator_enable_regmap,
	.disable = regulator_disable_regmap,
	.is_enabled = regulator_is_enabled_regmap,
	.get_current_limit = pm800_get_current_limit,
};

/* The array is indexed by id(PM800_ID_XXX) */
static struct pm800_regulator_info pm800_regulator_info[] = {
	PM800_BUCK(BUCK1, BUCK_ENA, 0, 3000000, buck1_volt_range, 0x55),
	PM800_BUCK(BUCK2, BUCK_ENA, 1, 1200000, buck2_5_volt_range, 0x73),
	PM800_BUCK(BUCK3, BUCK_ENA, 2, 1200000, buck2_5_volt_range, 0x73),
	PM800_BUCK(BUCK4, BUCK_ENA, 3, 1200000, buck2_5_volt_range, 0x73),
	PM800_BUCK(BUCK5, BUCK_ENA, 4, 1200000, buck2_5_volt_range, 0x73),

	PM800_LDO(LDO1, LDO_ENA1_1, 0, 200000, ldo1_volt_table),
	PM800_LDO(LDO2, LDO_ENA1_1, 1, 10000, ldo2_volt_table),
	PM800_LDO(LDO3, LDO_ENA1_1, 2, 300000, ldo3_17_volt_table),
	PM800_LDO(LDO4, LDO_ENA1_1, 3, 300000, ldo3_17_volt_table),
	PM800_LDO(LDO5, LDO_ENA1_1, 4, 300000, ldo3_17_volt_table),
	PM800_LDO(LDO6, LDO_ENA1_1, 5, 300000, ldo3_17_volt_table),
	PM800_LDO(LDO7, LDO_ENA1_1, 6, 300000, ldo3_17_volt_table),
	PM800_LDO(LDO8, LDO_ENA1_1, 7, 300000, ldo3_17_volt_table),
	PM800_LDO(LDO9, LDO_ENA1_2, 0, 300000, ldo3_17_volt_table),
	PM800_LDO(LDO10, LDO_ENA1_2, 1, 300000, ldo3_17_volt_table),
	PM800_LDO(LDO11, LDO_ENA1_2, 2, 300000, ldo3_17_volt_table),
	PM800_LDO(LDO12, LDO_ENA1_2, 3, 300000, ldo3_17_volt_table),
	PM800_LDO(LDO13, LDO_ENA1_2, 4, 300000, ldo3_17_volt_table),
	PM800_LDO(LDO14, LDO_ENA1_2, 5, 300000, ldo3_17_volt_table),
	PM800_LDO(LDO15, LDO_ENA1_2, 6, 300000, ldo3_17_volt_table),
	PM800_LDO(LDO16, LDO_ENA1_2, 7, 300000, ldo3_17_volt_table),
	PM800_LDO(LDO17, LDO_ENA1_3, 0, 300000, ldo3_17_volt_table),
	PM800_LDO(LDO18, LDO_ENA1_3, 1, 200000, ldo18_19_volt_table),
	PM800_LDO(LDO19, LDO_ENA1_3, 2, 200000, ldo18_19_volt_table),
};

#define PM800_REGULATOR_OF_MATCH(_name, _id)				\
	[PM800_ID_##_id] = {						\
		.name = #_name,						\
		.driver_data = &pm800_regulator_info[PM800_ID_##_id],	\
	}

static struct of_regulator_match pm800_regulator_matches[] = {
	PM800_REGULATOR_OF_MATCH(buck1, BUCK1),
	PM800_REGULATOR_OF_MATCH(buck2, BUCK2),
	PM800_REGULATOR_OF_MATCH(buck3, BUCK3),
	PM800_REGULATOR_OF_MATCH(buck4, BUCK4),
	PM800_REGULATOR_OF_MATCH(buck5, BUCK5),
	PM800_REGULATOR_OF_MATCH(ldo1, LDO1),
	PM800_REGULATOR_OF_MATCH(ldo2, LDO2),
	PM800_REGULATOR_OF_MATCH(ldo3, LDO3),
	PM800_REGULATOR_OF_MATCH(ldo4, LDO4),
	PM800_REGULATOR_OF_MATCH(ldo5, LDO5),
	PM800_REGULATOR_OF_MATCH(ldo6, LDO6),
	PM800_REGULATOR_OF_MATCH(ldo7, LDO7),
	PM800_REGULATOR_OF_MATCH(ldo8, LDO8),
	PM800_REGULATOR_OF_MATCH(ldo9, LDO9),
	PM800_REGULATOR_OF_MATCH(ldo10, LDO10),
	PM800_REGULATOR_OF_MATCH(ldo11, LDO11),
	PM800_REGULATOR_OF_MATCH(ldo12, LDO12),
	PM800_REGULATOR_OF_MATCH(ldo13, LDO13),
	PM800_REGULATOR_OF_MATCH(ldo14, LDO14),
	PM800_REGULATOR_OF_MATCH(ldo15, LDO15),
	PM800_REGULATOR_OF_MATCH(ldo16, LDO16),
	PM800_REGULATOR_OF_MATCH(ldo17, LDO17),
	PM800_REGULATOR_OF_MATCH(ldo18, LDO18),
	PM800_REGULATOR_OF_MATCH(ldo19, LDO19),
};

static int pm800_regulator_dt_init(struct platform_device *pdev)
{
	struct device_node *np = pdev->dev.of_node;
	int ret;

	ret = of_regulator_match(&pdev->dev, np,
				 pm800_regulator_matches,
				 ARRAY_SIZE(pm800_regulator_matches));
	if (ret < 0)
		return ret;

	return 0;
}

static int pm800_regulator_probe(struct platform_device *pdev)
{
	struct pm80x_chip *chip = dev_get_drvdata(pdev->dev.parent);
	struct pm80x_platform_data *pdata = dev_get_platdata(pdev->dev.parent);
	struct pm800_regulators *pm800_data;
	struct pm800_regulator_info *info;
	struct regulator_config config = { };
	struct regulator_init_data *init_data;
	int i, ret;

	if (!pdata || pdata->num_regulators == 0) {
		if (IS_ENABLED(CONFIG_OF)) {
			ret = pm800_regulator_dt_init(pdev);
			if (ret)
				return ret;
		} else {
			return -ENODEV;
		}
	} else if (pdata->num_regulators) {
		unsigned int count = 0;

		/* Check whether num_regulator is valid. */
		for (i = 0; i < ARRAY_SIZE(pdata->regulators); i++) {
			if (pdata->regulators[i])
				count++;
		}
		if (count != pdata->num_regulators)
			return -EINVAL;
	} else {
		return -EINVAL;
	}

	pm800_data = devm_kzalloc(&pdev->dev, sizeof(*pm800_data),
					GFP_KERNEL);
	if (!pm800_data) {
		dev_err(&pdev->dev, "Failed to allocate pm800_regualtors");
		return -ENOMEM;
	}

	pm800_data->map = chip->subchip->regmap_power;
	pm800_data->chip = chip;

	platform_set_drvdata(pdev, pm800_data);

	for (i = 0; i < PM800_ID_RG_MAX; i++) {
		if (!pdata || pdata->num_regulators == 0)
			init_data = pm800_regulator_matches[i].init_data;
		else
			init_data = pdata->regulators[i];
		if (!init_data)
			continue;
		info = pm800_regulator_matches[i].driver_data;
		config.dev = &pdev->dev;
		config.init_data = init_data;
		config.driver_data = info;
		config.regmap = pm800_data->map;
		config.of_node = pm800_regulator_matches[i].of_node;

		pm800_data->regulators[i] =
				regulator_register(&info->desc, &config);
		if (IS_ERR(pm800_data->regulators[i])) {
			ret = PTR_ERR(pm800_data->regulators[i]);
			dev_err(&pdev->dev, "Failed to register %s\n",
				info->desc.name);

			while (--i >= 0)
				regulator_unregister(pm800_data->regulators[i]);

			return ret;
		}
	}

	return 0;
}

static int pm800_regulator_remove(struct platform_device *pdev)
{
	struct pm800_regulators *pm800_data = platform_get_drvdata(pdev);
	int i;

	for (i = 0; i < PM800_ID_RG_MAX; i++)
		regulator_unregister(pm800_data->regulators[i]);

	return 0;
}

static struct platform_driver pm800_regulator_driver = {
	.driver		= {
		.name	= "88pm80x-regulator",
		.owner	= THIS_MODULE,
	},
	.probe		= pm800_regulator_probe,
	.remove		= pm800_regulator_remove,
};

module_platform_driver(pm800_regulator_driver);

MODULE_LICENSE("GPL");
MODULE_AUTHOR("Joseph(Yossi) Hanin <yhanin@marvell.com>");
MODULE_DESCRIPTION("Regulator Driver for Marvell 88PM800 PMIC");
MODULE_ALIAS("platform:88pm800-regulator");
back to top