Revision 3e1a0699095803e53072699a4a1485af7744601d authored by Joe Thornber on 03 March 2014, 16:03:26 UTC, committed by Mike Snitzer on 05 March 2014, 20:26:58 UTC
Ideally a thin pool would never run out of data space; the low water
mark would trigger userland to extend the pool before we completely run
out of space.  However, many small random IOs to unprovisioned space can
consume data space at an alarming rate.  Adjust your low water mark if
you're frequently seeing "out-of-data-space" mode.

Before this fix, if data space ran out the pool would be put in
PM_READ_ONLY mode which also aborted the pool's current metadata
transaction (data loss for any changes in the transaction).  This had a
side-effect of needlessly compromising data consistency.  And retry of
queued unserviceable bios, once the data pool was resized, could
initiate changes to potentially inconsistent pool metadata.

Now when the pool's data space is exhausted transition to a new pool
mode (PM_OUT_OF_DATA_SPACE) that allows metadata to be changed but data
may not be allocated.  This allows users to remove thin volumes or
discard data to recover data space.

The pool is no longer put in PM_READ_ONLY mode in response to the pool
running out of data space.  And PM_READ_ONLY mode no longer aborts the
pool's current metadata transaction.  Also, set_pool_mode() will now
notify userspace when the pool mode is changed.

Signed-off-by: Joe Thornber <ejt@redhat.com>
Signed-off-by: Mike Snitzer <snitzer@redhat.com>
1 parent 07f2b6e
Raw File
dpcsup.c
/*
 *	Adaptec AAC series RAID controller driver
 *	(c) Copyright 2001 Red Hat Inc.
 *
 * based on the old aacraid driver that is..
 * Adaptec aacraid device driver for Linux.
 *
 * Copyright (c) 2000-2010 Adaptec, Inc.
 *               2010 PMC-Sierra, Inc. (aacraid@pmc-sierra.com)
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2, or (at your option)
 * any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; see the file COPYING.  If not, write to
 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
 *
 * Module Name:
 *  dpcsup.c
 *
 * Abstract: All DPC processing routines for the cyclone board occur here.
 *
 *
 */

#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/types.h>
#include <linux/spinlock.h>
#include <linux/slab.h>
#include <linux/completion.h>
#include <linux/blkdev.h>
#include <linux/semaphore.h>

#include "aacraid.h"

/**
 *	aac_response_normal	-	Handle command replies
 *	@q: Queue to read from
 *
 *	This DPC routine will be run when the adapter interrupts us to let us
 *	know there is a response on our normal priority queue. We will pull off
 *	all QE there are and wake up all the waiters before exiting. We will
 *	take a spinlock out on the queue before operating on it.
 */

unsigned int aac_response_normal(struct aac_queue * q)
{
	struct aac_dev * dev = q->dev;
	struct aac_entry *entry;
	struct hw_fib * hwfib;
	struct fib * fib;
	int consumed = 0;
	unsigned long flags, mflags;

	spin_lock_irqsave(q->lock, flags);
	/*
	 *	Keep pulling response QEs off the response queue and waking
	 *	up the waiters until there are no more QEs. We then return
	 *	back to the system. If no response was requesed we just
	 *	deallocate the Fib here and continue.
	 */
	while(aac_consumer_get(dev, q, &entry))
	{
		int fast;
		u32 index = le32_to_cpu(entry->addr);
		fast = index & 0x01;
		fib = &dev->fibs[index >> 2];
		hwfib = fib->hw_fib_va;
		
		aac_consumer_free(dev, q, HostNormRespQueue);
		/*
		 *	Remove this fib from the Outstanding I/O queue.
		 *	But only if it has not already been timed out.
		 *
		 *	If the fib has been timed out already, then just 
		 *	continue. The caller has already been notified that
		 *	the fib timed out.
		 */
		dev->queues->queue[AdapNormCmdQueue].numpending--;

		if (unlikely(fib->flags & FIB_CONTEXT_FLAG_TIMED_OUT)) {
			spin_unlock_irqrestore(q->lock, flags);
			aac_fib_complete(fib);
			aac_fib_free(fib);
			spin_lock_irqsave(q->lock, flags);
			continue;
		}
		spin_unlock_irqrestore(q->lock, flags);

		if (fast) {
			/*
			 *	Doctor the fib
			 */
			*(__le32 *)hwfib->data = cpu_to_le32(ST_OK);
			hwfib->header.XferState |= cpu_to_le32(AdapterProcessed);
			fib->flags |= FIB_CONTEXT_FLAG_FASTRESP;
		}

		FIB_COUNTER_INCREMENT(aac_config.FibRecved);

		if (hwfib->header.Command == cpu_to_le16(NuFileSystem))
		{
			__le32 *pstatus = (__le32 *)hwfib->data;
			if (*pstatus & cpu_to_le32(0xffff0000))
				*pstatus = cpu_to_le32(ST_OK);
		}
		if (hwfib->header.XferState & cpu_to_le32(NoResponseExpected | Async)) 
		{
	        	if (hwfib->header.XferState & cpu_to_le32(NoResponseExpected))
				FIB_COUNTER_INCREMENT(aac_config.NoResponseRecved);
			else 
				FIB_COUNTER_INCREMENT(aac_config.AsyncRecved);
			/*
			 *	NOTE:  we cannot touch the fib after this
			 *	    call, because it may have been deallocated.
			 */
			fib->flags &= FIB_CONTEXT_FLAG_FASTRESP;
			fib->callback(fib->callback_data, fib);
		} else {
			unsigned long flagv;
			spin_lock_irqsave(&fib->event_lock, flagv);
			if (!fib->done) {
				fib->done = 1;
				up(&fib->event_wait);
			}
			spin_unlock_irqrestore(&fib->event_lock, flagv);

			spin_lock_irqsave(&dev->manage_lock, mflags);
			dev->management_fib_count--;
			spin_unlock_irqrestore(&dev->manage_lock, mflags);

			FIB_COUNTER_INCREMENT(aac_config.NormalRecved);
			if (fib->done == 2) {
				spin_lock_irqsave(&fib->event_lock, flagv);
				fib->done = 0;
				spin_unlock_irqrestore(&fib->event_lock, flagv);
				aac_fib_complete(fib);
				aac_fib_free(fib);
			}
		}
		consumed++;
		spin_lock_irqsave(q->lock, flags);
	}

	if (consumed > aac_config.peak_fibs)
		aac_config.peak_fibs = consumed;
	if (consumed == 0) 
		aac_config.zero_fibs++;

	spin_unlock_irqrestore(q->lock, flags);
	return 0;
}


/**
 *	aac_command_normal	-	handle commands
 *	@q: queue to process
 *
 *	This DPC routine will be queued when the adapter interrupts us to 
 *	let us know there is a command on our normal priority queue. We will 
 *	pull off all QE there are and wake up all the waiters before exiting.
 *	We will take a spinlock out on the queue before operating on it.
 */
 
unsigned int aac_command_normal(struct aac_queue *q)
{
	struct aac_dev * dev = q->dev;
	struct aac_entry *entry;
	unsigned long flags;

	spin_lock_irqsave(q->lock, flags);

	/*
	 *	Keep pulling response QEs off the response queue and waking
	 *	up the waiters until there are no more QEs. We then return
	 *	back to the system.
	 */
	while(aac_consumer_get(dev, q, &entry))
	{
		struct fib fibctx;
		struct hw_fib * hw_fib;
		u32 index;
		struct fib *fib = &fibctx;
		
		index = le32_to_cpu(entry->addr) / sizeof(struct hw_fib);
		hw_fib = &dev->aif_base_va[index];
		
		/*
		 *	Allocate a FIB at all costs. For non queued stuff
		 *	we can just use the stack so we are happy. We need
		 *	a fib object in order to manage the linked lists
		 */
		if (dev->aif_thread)
			if((fib = kmalloc(sizeof(struct fib), GFP_ATOMIC)) == NULL)
				fib = &fibctx;
		
		memset(fib, 0, sizeof(struct fib));
		INIT_LIST_HEAD(&fib->fiblink);
		fib->type = FSAFS_NTC_FIB_CONTEXT;
		fib->size = sizeof(struct fib);
		fib->hw_fib_va = hw_fib;
		fib->data = hw_fib->data;
		fib->dev = dev;
		
				
		if (dev->aif_thread && fib != &fibctx) {
		        list_add_tail(&fib->fiblink, &q->cmdq);
	 	        aac_consumer_free(dev, q, HostNormCmdQueue);
		        wake_up_interruptible(&q->cmdready);
		} else {
	 	        aac_consumer_free(dev, q, HostNormCmdQueue);
			spin_unlock_irqrestore(q->lock, flags);
			/*
			 *	Set the status of this FIB
			 */
			*(__le32 *)hw_fib->data = cpu_to_le32(ST_OK);
			aac_fib_adapter_complete(fib, sizeof(u32));
			spin_lock_irqsave(q->lock, flags);
		}		
	}
	spin_unlock_irqrestore(q->lock, flags);
	return 0;
}

/*
 *
 * aac_aif_callback
 * @context: the context set in the fib - here it is scsi cmd
 * @fibptr: pointer to the fib
 *
 * Handles the AIFs - new method (SRC)
 *
 */

static void aac_aif_callback(void *context, struct fib * fibptr)
{
	struct fib *fibctx;
	struct aac_dev *dev;
	struct aac_aifcmd *cmd;
	int status;

	fibctx = (struct fib *)context;
	BUG_ON(fibptr == NULL);
	dev = fibptr->dev;

	if (fibptr->hw_fib_va->header.XferState &
	    cpu_to_le32(NoMoreAifDataAvailable)) {
		aac_fib_complete(fibptr);
		aac_fib_free(fibptr);
		return;
	}

	aac_intr_normal(dev, 0, 1, 0, fibptr->hw_fib_va);

	aac_fib_init(fibctx);
	cmd = (struct aac_aifcmd *) fib_data(fibctx);
	cmd->command = cpu_to_le32(AifReqEvent);

	status = aac_fib_send(AifRequest,
		fibctx,
		sizeof(struct hw_fib)-sizeof(struct aac_fibhdr),
		FsaNormal,
		0, 1,
		(fib_callback)aac_aif_callback, fibctx);
}


/**
 *	aac_intr_normal	-	Handle command replies
 *	@dev: Device
 *	@index: completion reference
 *
 *	This DPC routine will be run when the adapter interrupts us to let us
 *	know there is a response on our normal priority queue. We will pull off
 *	all QE there are and wake up all the waiters before exiting.
 */
unsigned int aac_intr_normal(struct aac_dev *dev, u32 index,
			int isAif, int isFastResponse, struct hw_fib *aif_fib)
{
	unsigned long mflags;
	dprintk((KERN_INFO "aac_intr_normal(%p,%x)\n", dev, index));
	if (isAif == 1) {	/* AIF - common */
		struct hw_fib * hw_fib;
		struct fib * fib;
		struct aac_queue *q = &dev->queues->queue[HostNormCmdQueue];
		unsigned long flags;

		/*
		 *	Allocate a FIB. For non queued stuff we can just use
		 * the stack so we are happy. We need a fib object in order to
		 * manage the linked lists.
		 */
		if ((!dev->aif_thread)
		 || (!(fib = kzalloc(sizeof(struct fib),GFP_ATOMIC))))
			return 1;
		if (!(hw_fib = kzalloc(sizeof(struct hw_fib),GFP_ATOMIC))) {
			kfree (fib);
			return 1;
		}
		if (aif_fib != NULL) {
			memcpy(hw_fib, aif_fib, sizeof(struct hw_fib));
		} else {
			memcpy(hw_fib,
				(struct hw_fib *)(((uintptr_t)(dev->regs.sa)) +
				index), sizeof(struct hw_fib));
		}
		INIT_LIST_HEAD(&fib->fiblink);
		fib->type = FSAFS_NTC_FIB_CONTEXT;
		fib->size = sizeof(struct fib);
		fib->hw_fib_va = hw_fib;
		fib->data = hw_fib->data;
		fib->dev = dev;
	
		spin_lock_irqsave(q->lock, flags);
		list_add_tail(&fib->fiblink, &q->cmdq);
	        wake_up_interruptible(&q->cmdready);
		spin_unlock_irqrestore(q->lock, flags);
		return 1;
	} else if (isAif == 2) {	/* AIF - new (SRC) */
		struct fib *fibctx;
		struct aac_aifcmd *cmd;

		fibctx = aac_fib_alloc(dev);
		if (!fibctx)
			return 1;
		aac_fib_init(fibctx);

		cmd = (struct aac_aifcmd *) fib_data(fibctx);
		cmd->command = cpu_to_le32(AifReqEvent);

		return aac_fib_send(AifRequest,
			fibctx,
			sizeof(struct hw_fib)-sizeof(struct aac_fibhdr),
			FsaNormal,
			0, 1,
			(fib_callback)aac_aif_callback, fibctx);
	} else {
		struct fib *fib = &dev->fibs[index];
		struct hw_fib * hwfib = fib->hw_fib_va;

		/*
		 *	Remove this fib from the Outstanding I/O queue.
		 *	But only if it has not already been timed out.
		 *
		 *	If the fib has been timed out already, then just 
		 *	continue. The caller has already been notified that
		 *	the fib timed out.
		 */
		dev->queues->queue[AdapNormCmdQueue].numpending--;

		if (unlikely(fib->flags & FIB_CONTEXT_FLAG_TIMED_OUT)) {
			aac_fib_complete(fib);
			aac_fib_free(fib);
			return 0;
		}

		if (isFastResponse) {
			/*
			 *	Doctor the fib
			 */
			*(__le32 *)hwfib->data = cpu_to_le32(ST_OK);
			hwfib->header.XferState |= cpu_to_le32(AdapterProcessed);
			fib->flags |= FIB_CONTEXT_FLAG_FASTRESP;
		}

		FIB_COUNTER_INCREMENT(aac_config.FibRecved);

		if (hwfib->header.Command == cpu_to_le16(NuFileSystem))
		{
			__le32 *pstatus = (__le32 *)hwfib->data;
			if (*pstatus & cpu_to_le32(0xffff0000))
				*pstatus = cpu_to_le32(ST_OK);
		}
		if (hwfib->header.XferState & cpu_to_le32(NoResponseExpected | Async)) 
		{
	        	if (hwfib->header.XferState & cpu_to_le32(NoResponseExpected))
				FIB_COUNTER_INCREMENT(aac_config.NoResponseRecved);
			else 
				FIB_COUNTER_INCREMENT(aac_config.AsyncRecved);
			/*
			 *	NOTE:  we cannot touch the fib after this
			 *	    call, because it may have been deallocated.
			 */
			fib->flags &= FIB_CONTEXT_FLAG_FASTRESP;
			fib->callback(fib->callback_data, fib);
		} else {
			unsigned long flagv;
	  		dprintk((KERN_INFO "event_wait up\n"));
			spin_lock_irqsave(&fib->event_lock, flagv);
			if (!fib->done) {
				fib->done = 1;
				up(&fib->event_wait);
			}
			spin_unlock_irqrestore(&fib->event_lock, flagv);

			spin_lock_irqsave(&dev->manage_lock, mflags);
			dev->management_fib_count--;
			spin_unlock_irqrestore(&dev->manage_lock, mflags);

			FIB_COUNTER_INCREMENT(aac_config.NormalRecved);
			if (fib->done == 2) {
				spin_lock_irqsave(&fib->event_lock, flagv);
				fib->done = 0;
				spin_unlock_irqrestore(&fib->event_lock, flagv);
				aac_fib_complete(fib);
				aac_fib_free(fib);
			}

		}
		return 0;
	}
}
back to top