Revision 3fe09371802db3e1c35d924bc76b0ebb252bdc0d authored by Zhongyi Xie on 29 January 2018, 22:34:56 UTC, committed by Facebook Github Bot on 29 January 2018, 22:43:10 UTC
Summary:
ReadOptions.fill_cache is set in compaction inputs and can be set by users in their queries too. It tells RocksDB not to put a data block used to block cache.

The memory used by the data block is, however, not trackable by users.

To make the system more manageable, we can cost the block to block cache while using it, and then release it after using.
Closes https://github.com/facebook/rocksdb/pull/3333

Differential Revision: D6670230

Pulled By: miasantreble

fbshipit-source-id: ab848d3ed286bd081a13ee1903de357b56cbc308
1 parent e2d4b0e
Raw File
threadpool_imp.cc
//  Copyright (c) 2011-present, Facebook, Inc.  All rights reserved.
//  This source code is licensed under both the GPLv2 (found in the
//  COPYING file in the root directory) and Apache 2.0 License
//  (found in the LICENSE.Apache file in the root directory).
//
// Copyright (c) 2011 The LevelDB Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file. See the AUTHORS file for names of contributors.

#include "util/threadpool_imp.h"

#include "monitoring/thread_status_util.h"
#include "port/port.h"

#ifndef OS_WIN
#  include <unistd.h>
#endif

#ifdef OS_LINUX
#  include <sys/syscall.h>
#endif

#include <algorithm>
#include <atomic>
#include <condition_variable>
#include <mutex>
#include <stdlib.h>
#include <thread>
#include <vector>

namespace rocksdb {

void ThreadPoolImpl::PthreadCall(const char* label, int result) {
  if (result != 0) {
    fprintf(stderr, "pthread %s: %s\n", label, strerror(result));
    abort();
  }
}

struct ThreadPoolImpl::Impl {

  Impl();
  ~Impl();

  void JoinThreads(bool wait_for_jobs_to_complete);

  void SetBackgroundThreadsInternal(int num, bool allow_reduce);
  int GetBackgroundThreads();

  unsigned int GetQueueLen() const {
    return queue_len_.load(std::memory_order_relaxed);
  }

  void LowerIOPriority();

  void WakeUpAllThreads() {
    bgsignal_.notify_all();
  }

  void BGThread(size_t thread_id);

  void StartBGThreads();

  void Submit(std::function<void()>&& schedule,
    std::function<void()>&& unschedule, void* tag);

  int UnSchedule(void* arg);

  void SetHostEnv(Env* env) { env_ = env; }

  Env* GetHostEnv() const { return env_; }

  bool HasExcessiveThread() const {
    return static_cast<int>(bgthreads_.size()) > total_threads_limit_;
  }

  // Return true iff the current thread is the excessive thread to terminate.
  // Always terminate the running thread that is added last, even if there are
  // more than one thread to terminate.
  bool IsLastExcessiveThread(size_t thread_id) const {
    return HasExcessiveThread() && thread_id == bgthreads_.size() - 1;
  }

  bool IsExcessiveThread(size_t thread_id) const {
    return static_cast<int>(thread_id) >= total_threads_limit_;
  }

  // Return the thread priority.
  // This would allow its member-thread to know its priority.
  Env::Priority GetThreadPriority() const { return priority_; }

  // Set the thread priority.
  void SetThreadPriority(Env::Priority priority) { priority_ = priority; }

private:

  static void* BGThreadWrapper(void* arg);

  bool low_io_priority_;
  Env::Priority priority_;
  Env*         env_;

  int total_threads_limit_;
  std::atomic_uint queue_len_;  // Queue length. Used for stats reporting
  bool exit_all_threads_;
  bool wait_for_jobs_to_complete_;

  // Entry per Schedule()/Submit() call
  struct BGItem {
    void* tag = nullptr;
    std::function<void()> function;
    std::function<void()> unschedFunction;
  };

  using BGQueue = std::deque<BGItem>;
  BGQueue       queue_;

  std::mutex               mu_;
  std::condition_variable  bgsignal_;
  std::vector<port::Thread> bgthreads_;
};


inline
ThreadPoolImpl::Impl::Impl()
    :
      low_io_priority_(false),
      priority_(Env::LOW),
      env_(nullptr),
      total_threads_limit_(0),
      queue_len_(),
      exit_all_threads_(false),
      wait_for_jobs_to_complete_(false),
      queue_(),
      mu_(),
      bgsignal_(),
      bgthreads_() {
}

inline
ThreadPoolImpl::Impl::~Impl() { assert(bgthreads_.size() == 0U); }

void ThreadPoolImpl::Impl::JoinThreads(bool wait_for_jobs_to_complete) {

  std::unique_lock<std::mutex> lock(mu_);
  assert(!exit_all_threads_);

  wait_for_jobs_to_complete_ = wait_for_jobs_to_complete;
  exit_all_threads_ = true;
  // prevent threads from being recreated right after they're joined, in case
  // the user is concurrently submitting jobs.
  total_threads_limit_ = 0;

  lock.unlock();

  bgsignal_.notify_all();

  for (auto& th : bgthreads_) {
    th.join();
  }

  bgthreads_.clear();

  exit_all_threads_ = false;
  wait_for_jobs_to_complete_ = false;
}

inline
void ThreadPoolImpl::Impl::LowerIOPriority() {
  std::lock_guard<std::mutex> lock(mu_);
  low_io_priority_ = true;
}


void ThreadPoolImpl::Impl::BGThread(size_t thread_id) {
  bool low_io_priority = false;
  while (true) {
// Wait until there is an item that is ready to run
    std::unique_lock<std::mutex> lock(mu_);
    // Stop waiting if the thread needs to do work or needs to terminate.
    while (!exit_all_threads_ && !IsLastExcessiveThread(thread_id) &&
           (queue_.empty() || IsExcessiveThread(thread_id))) {
      bgsignal_.wait(lock);
    }

    if (exit_all_threads_) {  // mechanism to let BG threads exit safely

      if(!wait_for_jobs_to_complete_ ||
          queue_.empty()) {
        break;
       }
    }

    if (IsLastExcessiveThread(thread_id)) {
      // Current thread is the last generated one and is excessive.
      // We always terminate excessive thread in the reverse order of
      // generation time.
      auto& terminating_thread = bgthreads_.back();
      terminating_thread.detach();
      bgthreads_.pop_back();

      if (HasExcessiveThread()) {
        // There is still at least more excessive thread to terminate.
        WakeUpAllThreads();
      }
      break;
    }

    auto func = std::move(queue_.front().function);
    queue_.pop_front();

    queue_len_.store(static_cast<unsigned int>(queue_.size()),
                     std::memory_order_relaxed);

    bool decrease_io_priority = (low_io_priority != low_io_priority_);
    lock.unlock();

#ifdef OS_LINUX
    if (decrease_io_priority) {
#define IOPRIO_CLASS_SHIFT (13)
#define IOPRIO_PRIO_VALUE(class, data) (((class) << IOPRIO_CLASS_SHIFT) | data)
      // Put schedule into IOPRIO_CLASS_IDLE class (lowest)
      // These system calls only have an effect when used in conjunction
      // with an I/O scheduler that supports I/O priorities. As at
      // kernel 2.6.17 the only such scheduler is the Completely
      // Fair Queuing (CFQ) I/O scheduler.
      // To change scheduler:
      //  echo cfq > /sys/block/<device_name>/queue/schedule
      // Tunables to consider:
      //  /sys/block/<device_name>/queue/slice_idle
      //  /sys/block/<device_name>/queue/slice_sync
      syscall(SYS_ioprio_set, 1,  // IOPRIO_WHO_PROCESS
              0,                  // current thread
              IOPRIO_PRIO_VALUE(3, 0));
      low_io_priority = true;
    }
#else
    (void)decrease_io_priority;  // avoid 'unused variable' error
#endif
    func();
  }
}

// Helper struct for passing arguments when creating threads.
struct BGThreadMetadata {
  ThreadPoolImpl::Impl* thread_pool_;
  size_t thread_id_;  // Thread count in the thread.
  BGThreadMetadata(ThreadPoolImpl::Impl* thread_pool, size_t thread_id)
      : thread_pool_(thread_pool), thread_id_(thread_id) {}
};

void* ThreadPoolImpl::Impl::BGThreadWrapper(void* arg) {
  BGThreadMetadata* meta = reinterpret_cast<BGThreadMetadata*>(arg);
  size_t thread_id = meta->thread_id_;
  ThreadPoolImpl::Impl* tp = meta->thread_pool_;
#ifdef ROCKSDB_USING_THREAD_STATUS
  // initialize it because compiler isn't good enough to see we don't use it
  // uninitialized
  ThreadStatus::ThreadType thread_type = ThreadStatus::NUM_THREAD_TYPES;
  switch (tp->GetThreadPriority()) {
    case Env::Priority::HIGH:
      thread_type = ThreadStatus::HIGH_PRIORITY;
      break;
    case Env::Priority::LOW:
      thread_type = ThreadStatus::LOW_PRIORITY;
      break;
    case Env::Priority::BOTTOM:
      thread_type = ThreadStatus::BOTTOM_PRIORITY;
      break;
    case Env::Priority::TOTAL:
      assert(false);
      return nullptr;
  }
  assert(thread_type != ThreadStatus::NUM_THREAD_TYPES);
  ThreadStatusUtil::RegisterThread(tp->GetHostEnv(), thread_type);
#endif
  delete meta;
  tp->BGThread(thread_id);
#ifdef ROCKSDB_USING_THREAD_STATUS
  ThreadStatusUtil::UnregisterThread();
#endif
  return nullptr;
}

void ThreadPoolImpl::Impl::SetBackgroundThreadsInternal(int num,
  bool allow_reduce) {
  std::unique_lock<std::mutex> lock(mu_);
  if (exit_all_threads_) {
    lock.unlock();
    return;
  }
  if (num > total_threads_limit_ ||
      (num < total_threads_limit_ && allow_reduce)) {
    total_threads_limit_ = std::max(0, num);
    WakeUpAllThreads();
    StartBGThreads();
  }
}

int ThreadPoolImpl::Impl::GetBackgroundThreads() {
  std::unique_lock<std::mutex> lock(mu_);
  return total_threads_limit_;
}

void ThreadPoolImpl::Impl::StartBGThreads() {
  // Start background thread if necessary
  while ((int)bgthreads_.size() < total_threads_limit_) {

    port::Thread p_t(&BGThreadWrapper,
      new BGThreadMetadata(this, bgthreads_.size()));

// Set the thread name to aid debugging
#if defined(_GNU_SOURCE) && defined(__GLIBC_PREREQ)
#if __GLIBC_PREREQ(2, 12)
    auto th_handle = p_t.native_handle();
    char name_buf[16];
    snprintf(name_buf, sizeof name_buf, "rocksdb:bg%" ROCKSDB_PRIszt,
             bgthreads_.size());
    name_buf[sizeof name_buf - 1] = '\0';
    pthread_setname_np(th_handle, name_buf);
#endif
#endif
    bgthreads_.push_back(std::move(p_t));
  }
}

void ThreadPoolImpl::Impl::Submit(std::function<void()>&& schedule,
  std::function<void()>&& unschedule, void* tag) {

  std::lock_guard<std::mutex> lock(mu_);

  if (exit_all_threads_) {
    return;
  }

  StartBGThreads();

  // Add to priority queue
  queue_.push_back(BGItem());

  auto& item = queue_.back();
  item.tag = tag;
  item.function = std::move(schedule);
  item.unschedFunction = std::move(unschedule);

  queue_len_.store(static_cast<unsigned int>(queue_.size()),
    std::memory_order_relaxed);

  if (!HasExcessiveThread()) {
    // Wake up at least one waiting thread.
    bgsignal_.notify_one();
  } else {
    // Need to wake up all threads to make sure the one woken
    // up is not the one to terminate.
    WakeUpAllThreads();
  }
}

int ThreadPoolImpl::Impl::UnSchedule(void* arg) {
  int count = 0;

  std::vector<std::function<void()>> candidates;
  {
    std::lock_guard<std::mutex> lock(mu_);

    // Remove from priority queue
    BGQueue::iterator it = queue_.begin();
    while (it != queue_.end()) {
      if (arg == (*it).tag) {
        if (it->unschedFunction) {
          candidates.push_back(std::move(it->unschedFunction));
        }
        it = queue_.erase(it);
        count++;
      } else {
        ++it;
      }
    }
    queue_len_.store(static_cast<unsigned int>(queue_.size()),
      std::memory_order_relaxed);
  }


 // Run unschedule functions outside the mutex
  for (auto& f : candidates) {
    f();
  }

  return count;
}

ThreadPoolImpl::ThreadPoolImpl() :
  impl_(new Impl()) {
}


ThreadPoolImpl::~ThreadPoolImpl() {
}

void ThreadPoolImpl::JoinAllThreads() {
  impl_->JoinThreads(false);
}

void ThreadPoolImpl::SetBackgroundThreads(int num) {
  impl_->SetBackgroundThreadsInternal(num, true);
}

int ThreadPoolImpl::GetBackgroundThreads() {
  return impl_->GetBackgroundThreads();
}

unsigned int ThreadPoolImpl::GetQueueLen() const {
  return impl_->GetQueueLen();
}

void ThreadPoolImpl::WaitForJobsAndJoinAllThreads() {
  impl_->JoinThreads(true);
}

void ThreadPoolImpl::LowerIOPriority() {
  impl_->LowerIOPriority();
}

void ThreadPoolImpl::IncBackgroundThreadsIfNeeded(int num) {
  impl_->SetBackgroundThreadsInternal(num, false);
}

void ThreadPoolImpl::SubmitJob(const std::function<void()>& job) {
  auto copy(job);
  impl_->Submit(std::move(copy), std::function<void()>(), nullptr);
}


void ThreadPoolImpl::SubmitJob(std::function<void()>&& job) {
  impl_->Submit(std::move(job), std::function<void()>(), nullptr);
}

void ThreadPoolImpl::Schedule(void(*function)(void* arg1), void* arg,
  void* tag, void(*unschedFunction)(void* arg)) {

  std::function<void()> fn = [arg, function] { function(arg); };

  std::function<void()> unfn;
  if (unschedFunction != nullptr) {
    auto uf = [arg, unschedFunction] { unschedFunction(arg); };
    unfn = std::move(uf);
  }

  impl_->Submit(std::move(fn), std::move(unfn), tag);
}

int ThreadPoolImpl::UnSchedule(void* arg) {
  return impl_->UnSchedule(arg);
}

void ThreadPoolImpl::SetHostEnv(Env* env) { impl_->SetHostEnv(env); }

Env* ThreadPoolImpl::GetHostEnv() const { return impl_->GetHostEnv(); }

// Return the thread priority.
// This would allow its member-thread to know its priority.
Env::Priority ThreadPoolImpl::GetThreadPriority() const {
  return impl_->GetThreadPriority();
}

// Set the thread priority.
void ThreadPoolImpl::SetThreadPriority(Env::Priority priority) {
  impl_->SetThreadPriority(priority);
}

ThreadPool* NewThreadPool(int num_threads) {
  ThreadPoolImpl* thread_pool = new ThreadPoolImpl();
  thread_pool->SetBackgroundThreads(num_threads);
  return thread_pool;
}

}  // namespace rocksdb
back to top