Revision 400dd489d42faef3647d990dd67f553371ec204b authored by Ian Rogers on 15 December 2022, 06:55:02 UTC, committed by Arnaldo Carvalho de Melo on 21 December 2022, 17:52:41 UTC
Update the sapphirerapids metrics and events using the new tooling from:

  https://github.com/intel/perfmon

The metrics are unchanged but the formulas differ due to parentheses,
use of exponents and removal of redundant operations like "* 1". The
order of metrics varies as TMA metrics are first converted and then
removed if perfmon versions are found. The events are updated to 1.09,
in particular uncore, with fixes to uncore events and improved
descriptions. The formatting changes increase consistency across the
json files.

Signed-off-by: Ian Rogers <irogers@google.com>
Acked-by: Kan Liang <kan.liang@linux.intel.com>
Cc: Adrian Hunter <adrian.hunter@intel.com>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Caleb Biggers <caleb.biggers@intel.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jiri Olsa <jolsa@kernel.org>
Cc: John Garry <john.g.garry@oracle.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Perry Taylor <perry.taylor@intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Xing Zhengjun <zhengjun.xing@linux.intel.com>
Link: https://lore.kernel.org/r/20221215065510.1621979-16-irogers@google.com
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
1 parent 28641ef
Raw File
sha3_generic.c
// SPDX-License-Identifier: GPL-2.0-or-later
/*
 * Cryptographic API.
 *
 * SHA-3, as specified in
 * https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf
 *
 * SHA-3 code by Jeff Garzik <jeff@garzik.org>
 *               Ard Biesheuvel <ard.biesheuvel@linaro.org>
 */
#include <crypto/internal/hash.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/types.h>
#include <crypto/sha3.h>
#include <asm/unaligned.h>

/*
 * On some 32-bit architectures (h8300), GCC ends up using
 * over 1 KB of stack if we inline the round calculation into the loop
 * in keccakf(). On the other hand, on 64-bit architectures with plenty
 * of [64-bit wide] general purpose registers, not inlining it severely
 * hurts performance. So let's use 64-bitness as a heuristic to decide
 * whether to inline or not.
 */
#ifdef CONFIG_64BIT
#define SHA3_INLINE	inline
#else
#define SHA3_INLINE	noinline
#endif

#define KECCAK_ROUNDS 24

static const u64 keccakf_rndc[24] = {
	0x0000000000000001ULL, 0x0000000000008082ULL, 0x800000000000808aULL,
	0x8000000080008000ULL, 0x000000000000808bULL, 0x0000000080000001ULL,
	0x8000000080008081ULL, 0x8000000000008009ULL, 0x000000000000008aULL,
	0x0000000000000088ULL, 0x0000000080008009ULL, 0x000000008000000aULL,
	0x000000008000808bULL, 0x800000000000008bULL, 0x8000000000008089ULL,
	0x8000000000008003ULL, 0x8000000000008002ULL, 0x8000000000000080ULL,
	0x000000000000800aULL, 0x800000008000000aULL, 0x8000000080008081ULL,
	0x8000000000008080ULL, 0x0000000080000001ULL, 0x8000000080008008ULL
};

/* update the state with given number of rounds */

static SHA3_INLINE void keccakf_round(u64 st[25])
{
	u64 t[5], tt, bc[5];

	/* Theta */
	bc[0] = st[0] ^ st[5] ^ st[10] ^ st[15] ^ st[20];
	bc[1] = st[1] ^ st[6] ^ st[11] ^ st[16] ^ st[21];
	bc[2] = st[2] ^ st[7] ^ st[12] ^ st[17] ^ st[22];
	bc[3] = st[3] ^ st[8] ^ st[13] ^ st[18] ^ st[23];
	bc[4] = st[4] ^ st[9] ^ st[14] ^ st[19] ^ st[24];

	t[0] = bc[4] ^ rol64(bc[1], 1);
	t[1] = bc[0] ^ rol64(bc[2], 1);
	t[2] = bc[1] ^ rol64(bc[3], 1);
	t[3] = bc[2] ^ rol64(bc[4], 1);
	t[4] = bc[3] ^ rol64(bc[0], 1);

	st[0] ^= t[0];

	/* Rho Pi */
	tt = st[1];
	st[ 1] = rol64(st[ 6] ^ t[1], 44);
	st[ 6] = rol64(st[ 9] ^ t[4], 20);
	st[ 9] = rol64(st[22] ^ t[2], 61);
	st[22] = rol64(st[14] ^ t[4], 39);
	st[14] = rol64(st[20] ^ t[0], 18);
	st[20] = rol64(st[ 2] ^ t[2], 62);
	st[ 2] = rol64(st[12] ^ t[2], 43);
	st[12] = rol64(st[13] ^ t[3], 25);
	st[13] = rol64(st[19] ^ t[4],  8);
	st[19] = rol64(st[23] ^ t[3], 56);
	st[23] = rol64(st[15] ^ t[0], 41);
	st[15] = rol64(st[ 4] ^ t[4], 27);
	st[ 4] = rol64(st[24] ^ t[4], 14);
	st[24] = rol64(st[21] ^ t[1],  2);
	st[21] = rol64(st[ 8] ^ t[3], 55);
	st[ 8] = rol64(st[16] ^ t[1], 45);
	st[16] = rol64(st[ 5] ^ t[0], 36);
	st[ 5] = rol64(st[ 3] ^ t[3], 28);
	st[ 3] = rol64(st[18] ^ t[3], 21);
	st[18] = rol64(st[17] ^ t[2], 15);
	st[17] = rol64(st[11] ^ t[1], 10);
	st[11] = rol64(st[ 7] ^ t[2],  6);
	st[ 7] = rol64(st[10] ^ t[0],  3);
	st[10] = rol64(    tt ^ t[1],  1);

	/* Chi */
	bc[ 0] = ~st[ 1] & st[ 2];
	bc[ 1] = ~st[ 2] & st[ 3];
	bc[ 2] = ~st[ 3] & st[ 4];
	bc[ 3] = ~st[ 4] & st[ 0];
	bc[ 4] = ~st[ 0] & st[ 1];
	st[ 0] ^= bc[ 0];
	st[ 1] ^= bc[ 1];
	st[ 2] ^= bc[ 2];
	st[ 3] ^= bc[ 3];
	st[ 4] ^= bc[ 4];

	bc[ 0] = ~st[ 6] & st[ 7];
	bc[ 1] = ~st[ 7] & st[ 8];
	bc[ 2] = ~st[ 8] & st[ 9];
	bc[ 3] = ~st[ 9] & st[ 5];
	bc[ 4] = ~st[ 5] & st[ 6];
	st[ 5] ^= bc[ 0];
	st[ 6] ^= bc[ 1];
	st[ 7] ^= bc[ 2];
	st[ 8] ^= bc[ 3];
	st[ 9] ^= bc[ 4];

	bc[ 0] = ~st[11] & st[12];
	bc[ 1] = ~st[12] & st[13];
	bc[ 2] = ~st[13] & st[14];
	bc[ 3] = ~st[14] & st[10];
	bc[ 4] = ~st[10] & st[11];
	st[10] ^= bc[ 0];
	st[11] ^= bc[ 1];
	st[12] ^= bc[ 2];
	st[13] ^= bc[ 3];
	st[14] ^= bc[ 4];

	bc[ 0] = ~st[16] & st[17];
	bc[ 1] = ~st[17] & st[18];
	bc[ 2] = ~st[18] & st[19];
	bc[ 3] = ~st[19] & st[15];
	bc[ 4] = ~st[15] & st[16];
	st[15] ^= bc[ 0];
	st[16] ^= bc[ 1];
	st[17] ^= bc[ 2];
	st[18] ^= bc[ 3];
	st[19] ^= bc[ 4];

	bc[ 0] = ~st[21] & st[22];
	bc[ 1] = ~st[22] & st[23];
	bc[ 2] = ~st[23] & st[24];
	bc[ 3] = ~st[24] & st[20];
	bc[ 4] = ~st[20] & st[21];
	st[20] ^= bc[ 0];
	st[21] ^= bc[ 1];
	st[22] ^= bc[ 2];
	st[23] ^= bc[ 3];
	st[24] ^= bc[ 4];
}

static void keccakf(u64 st[25])
{
	int round;

	for (round = 0; round < KECCAK_ROUNDS; round++) {
		keccakf_round(st);
		/* Iota */
		st[0] ^= keccakf_rndc[round];
	}
}

int crypto_sha3_init(struct shash_desc *desc)
{
	struct sha3_state *sctx = shash_desc_ctx(desc);
	unsigned int digest_size = crypto_shash_digestsize(desc->tfm);

	sctx->rsiz = 200 - 2 * digest_size;
	sctx->rsizw = sctx->rsiz / 8;
	sctx->partial = 0;

	memset(sctx->st, 0, sizeof(sctx->st));
	return 0;
}
EXPORT_SYMBOL(crypto_sha3_init);

int crypto_sha3_update(struct shash_desc *desc, const u8 *data,
		       unsigned int len)
{
	struct sha3_state *sctx = shash_desc_ctx(desc);
	unsigned int done;
	const u8 *src;

	done = 0;
	src = data;

	if ((sctx->partial + len) > (sctx->rsiz - 1)) {
		if (sctx->partial) {
			done = -sctx->partial;
			memcpy(sctx->buf + sctx->partial, data,
			       done + sctx->rsiz);
			src = sctx->buf;
		}

		do {
			unsigned int i;

			for (i = 0; i < sctx->rsizw; i++)
				sctx->st[i] ^= get_unaligned_le64(src + 8 * i);
			keccakf(sctx->st);

			done += sctx->rsiz;
			src = data + done;
		} while (done + (sctx->rsiz - 1) < len);

		sctx->partial = 0;
	}
	memcpy(sctx->buf + sctx->partial, src, len - done);
	sctx->partial += (len - done);

	return 0;
}
EXPORT_SYMBOL(crypto_sha3_update);

int crypto_sha3_final(struct shash_desc *desc, u8 *out)
{
	struct sha3_state *sctx = shash_desc_ctx(desc);
	unsigned int i, inlen = sctx->partial;
	unsigned int digest_size = crypto_shash_digestsize(desc->tfm);
	__le64 *digest = (__le64 *)out;

	sctx->buf[inlen++] = 0x06;
	memset(sctx->buf + inlen, 0, sctx->rsiz - inlen);
	sctx->buf[sctx->rsiz - 1] |= 0x80;

	for (i = 0; i < sctx->rsizw; i++)
		sctx->st[i] ^= get_unaligned_le64(sctx->buf + 8 * i);

	keccakf(sctx->st);

	for (i = 0; i < digest_size / 8; i++)
		put_unaligned_le64(sctx->st[i], digest++);

	if (digest_size & 4)
		put_unaligned_le32(sctx->st[i], (__le32 *)digest);

	memset(sctx, 0, sizeof(*sctx));
	return 0;
}
EXPORT_SYMBOL(crypto_sha3_final);

static struct shash_alg algs[] = { {
	.digestsize		= SHA3_224_DIGEST_SIZE,
	.init			= crypto_sha3_init,
	.update			= crypto_sha3_update,
	.final			= crypto_sha3_final,
	.descsize		= sizeof(struct sha3_state),
	.base.cra_name		= "sha3-224",
	.base.cra_driver_name	= "sha3-224-generic",
	.base.cra_blocksize	= SHA3_224_BLOCK_SIZE,
	.base.cra_module	= THIS_MODULE,
}, {
	.digestsize		= SHA3_256_DIGEST_SIZE,
	.init			= crypto_sha3_init,
	.update			= crypto_sha3_update,
	.final			= crypto_sha3_final,
	.descsize		= sizeof(struct sha3_state),
	.base.cra_name		= "sha3-256",
	.base.cra_driver_name	= "sha3-256-generic",
	.base.cra_blocksize	= SHA3_256_BLOCK_SIZE,
	.base.cra_module	= THIS_MODULE,
}, {
	.digestsize		= SHA3_384_DIGEST_SIZE,
	.init			= crypto_sha3_init,
	.update			= crypto_sha3_update,
	.final			= crypto_sha3_final,
	.descsize		= sizeof(struct sha3_state),
	.base.cra_name		= "sha3-384",
	.base.cra_driver_name	= "sha3-384-generic",
	.base.cra_blocksize	= SHA3_384_BLOCK_SIZE,
	.base.cra_module	= THIS_MODULE,
}, {
	.digestsize		= SHA3_512_DIGEST_SIZE,
	.init			= crypto_sha3_init,
	.update			= crypto_sha3_update,
	.final			= crypto_sha3_final,
	.descsize		= sizeof(struct sha3_state),
	.base.cra_name		= "sha3-512",
	.base.cra_driver_name	= "sha3-512-generic",
	.base.cra_blocksize	= SHA3_512_BLOCK_SIZE,
	.base.cra_module	= THIS_MODULE,
} };

static int __init sha3_generic_mod_init(void)
{
	return crypto_register_shashes(algs, ARRAY_SIZE(algs));
}

static void __exit sha3_generic_mod_fini(void)
{
	crypto_unregister_shashes(algs, ARRAY_SIZE(algs));
}

subsys_initcall(sha3_generic_mod_init);
module_exit(sha3_generic_mod_fini);

MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("SHA-3 Secure Hash Algorithm");

MODULE_ALIAS_CRYPTO("sha3-224");
MODULE_ALIAS_CRYPTO("sha3-224-generic");
MODULE_ALIAS_CRYPTO("sha3-256");
MODULE_ALIAS_CRYPTO("sha3-256-generic");
MODULE_ALIAS_CRYPTO("sha3-384");
MODULE_ALIAS_CRYPTO("sha3-384-generic");
MODULE_ALIAS_CRYPTO("sha3-512");
MODULE_ALIAS_CRYPTO("sha3-512-generic");
back to top