https://github.com/cran/bayestestR
Revision 40f7c88ddf855896018cf20ec8a7ac5fbd0ea2fb authored by Dominique Makowski on 27 January 2020, 05:30 UTC, committed by cran-robot on 27 January 2020, 05:30 UTC
1 parent d8462ad
Raw File
Tip revision: 40f7c88ddf855896018cf20ec8a7ac5fbd0ea2fb authored by Dominique Makowski on 27 January 2020, 05:30 UTC
version 0.5.1
Tip revision: 40f7c88
bayestestR.html
<!DOCTYPE html>

<html xmlns="http://www.w3.org/1999/xhtml">

<head>

<meta charset="utf-8">
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<meta name="generator" content="pandoc" />
<meta name="viewport" content="width=device-width, initial-scale=1">

<style type="text/css">
@font-face {
font-family: octicons-link;
src: url(data:font/woff;charset=utf-8;base64,d09GRgABAAAAAAZwABAAAAAACFQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABEU0lHAAAGaAAAAAgAAAAIAAAAAUdTVUIAAAZcAAAACgAAAAoAAQAAT1MvMgAAAyQAAABJAAAAYFYEU3RjbWFwAAADcAAAAEUAAACAAJThvmN2dCAAAATkAAAABAAAAAQAAAAAZnBnbQAAA7gAAACyAAABCUM+8IhnYXNwAAAGTAAAABAAAAAQABoAI2dseWYAAAFsAAABPAAAAZwcEq9taGVhZAAAAsgAAAA0AAAANgh4a91oaGVhAAADCAAAABoAAAAkCA8DRGhtdHgAAAL8AAAADAAAAAwGAACfbG9jYQAAAsAAAAAIAAAACABiATBtYXhwAAACqAAAABgAAAAgAA8ASm5hbWUAAAToAAABQgAAAlXu73sOcG9zdAAABiwAAAAeAAAAME3QpOBwcmVwAAAEbAAAAHYAAAB/aFGpk3jaTY6xa8JAGMW/O62BDi0tJLYQincXEypYIiGJjSgHniQ6umTsUEyLm5BV6NDBP8Tpts6F0v+k/0an2i+itHDw3v2+9+DBKTzsJNnWJNTgHEy4BgG3EMI9DCEDOGEXzDADU5hBKMIgNPZqoD3SilVaXZCER3/I7AtxEJLtzzuZfI+VVkprxTlXShWKb3TBecG11rwoNlmmn1P2WYcJczl32etSpKnziC7lQyWe1smVPy/Lt7Kc+0vWY/gAgIIEqAN9we0pwKXreiMasxvabDQMM4riO+qxM2ogwDGOZTXxwxDiycQIcoYFBLj5K3EIaSctAq2kTYiw+ymhce7vwM9jSqO8JyVd5RH9gyTt2+J/yUmYlIR0s04n6+7Vm1ozezUeLEaUjhaDSuXHwVRgvLJn1tQ7xiuVv/ocTRF42mNgZGBgYGbwZOBiAAFGJBIMAAizAFoAAABiAGIAznjaY2BkYGAA4in8zwXi+W2+MjCzMIDApSwvXzC97Z4Ig8N/BxYGZgcgl52BCSQKAA3jCV8CAABfAAAAAAQAAEB42mNgZGBg4f3vACQZQABIMjKgAmYAKEgBXgAAeNpjYGY6wTiBgZWBg2kmUxoDA4MPhGZMYzBi1AHygVLYQUCaawqDA4PChxhmh/8ODDEsvAwHgMKMIDnGL0x7gJQCAwMAJd4MFwAAAHjaY2BgYGaA4DAGRgYQkAHyGMF8NgYrIM3JIAGVYYDT+AEjAwuDFpBmA9KMDEwMCh9i/v8H8sH0/4dQc1iAmAkALaUKLgAAAHjaTY9LDsIgEIbtgqHUPpDi3gPoBVyRTmTddOmqTXThEXqrob2gQ1FjwpDvfwCBdmdXC5AVKFu3e5MfNFJ29KTQT48Ob9/lqYwOGZxeUelN2U2R6+cArgtCJpauW7UQBqnFkUsjAY/kOU1cP+DAgvxwn1chZDwUbd6CFimGXwzwF6tPbFIcjEl+vvmM/byA48e6tWrKArm4ZJlCbdsrxksL1AwWn/yBSJKpYbq8AXaaTb8AAHja28jAwOC00ZrBeQNDQOWO//sdBBgYGRiYWYAEELEwMTE4uzo5Zzo5b2BxdnFOcALxNjA6b2ByTswC8jYwg0VlNuoCTWAMqNzMzsoK1rEhNqByEyerg5PMJlYuVueETKcd/89uBpnpvIEVomeHLoMsAAe1Id4AAAAAAAB42oWQT07CQBTGv0JBhagk7HQzKxca2sJCE1hDt4QF+9JOS0nbaaYDCQfwCJ7Au3AHj+LO13FMmm6cl7785vven0kBjHCBhfpYuNa5Ph1c0e2Xu3jEvWG7UdPDLZ4N92nOm+EBXuAbHmIMSRMs+4aUEd4Nd3CHD8NdvOLTsA2GL8M9PODbcL+hD7C1xoaHeLJSEao0FEW14ckxC+TU8TxvsY6X0eLPmRhry2WVioLpkrbp84LLQPGI7c6sOiUzpWIWS5GzlSgUzzLBSikOPFTOXqly7rqx0Z1Q5BAIoZBSFihQYQOOBEdkCOgXTOHA07HAGjGWiIjaPZNW13/+lm6S9FT7rLHFJ6fQbkATOG1j2OFMucKJJsxIVfQORl+9Jyda6Sl1dUYhSCm1dyClfoeDve4qMYdLEbfqHf3O/AdDumsjAAB42mNgYoAAZQYjBmyAGYQZmdhL8zLdDEydARfoAqIAAAABAAMABwAKABMAB///AA8AAQAAAAAAAAAAAAAAAAABAAAAAA==) format('woff');
}
body {
-webkit-text-size-adjust: 100%;
text-size-adjust: 100%;
color: #333;
font-family: "Helvetica Neue", Helvetica, "Segoe UI", Arial, freesans, sans-serif, "Apple Color Emoji", "Segoe UI Emoji", "Segoe UI Symbol";
font-size: 16px;
line-height: 1.6;
word-wrap: break-word;
}
a {
background-color: transparent;
}
a:active,
a:hover {
outline: 0;
}
strong {
font-weight: bold;
}
h1 {
font-size: 2em;
margin: 0.67em 0;
}
img {
border: 0;
}
hr {
box-sizing: content-box;
height: 0;
}
pre {
overflow: auto;
}
code,
kbd,
pre {
font-family: monospace, monospace;
font-size: 1em;
}
input {
color: inherit;
font: inherit;
margin: 0;
}
html input[disabled] {
cursor: default;
}
input {
line-height: normal;
}
input[type="checkbox"] {
box-sizing: border-box;
padding: 0;
}
table {
border-collapse: collapse;
border-spacing: 0;
}
td,
th {
padding: 0;
}
* {
box-sizing: border-box;
}
input {
font: 13px / 1.4 Helvetica, arial, nimbussansl, liberationsans, freesans, clean, sans-serif, "Apple Color Emoji", "Segoe UI Emoji", "Segoe UI Symbol";
}
a {
color: #4078c0;
text-decoration: none;
}
a:hover,
a:active {
text-decoration: underline;
}
hr {
height: 0;
margin: 15px 0;
overflow: hidden;
background: transparent;
border: 0;
border-bottom: 1px solid #ddd;
}
hr:before {
display: table;
content: "";
}
hr:after {
display: table;
clear: both;
content: "";
}
h1,
h2,
h3,
h4,
h5,
h6 {
margin-top: 15px;
margin-bottom: 15px;
line-height: 1.1;
}
h1 {
font-size: 30px;
}
h2 {
font-size: 21px;
}
h3 {
font-size: 16px;
}
h4 {
font-size: 14px;
}
h5 {
font-size: 12px;
}
h6 {
font-size: 11px;
}
blockquote {
margin: 0;
}
ul,
ol {
padding: 0;
margin-top: 0;
margin-bottom: 0;
}
ol ol,
ul ol {
list-style-type: lower-roman;
}
ul ul ol,
ul ol ol,
ol ul ol,
ol ol ol {
list-style-type: lower-alpha;
}
dd {
margin-left: 0;
}
code {
font-family: Consolas, "Liberation Mono", Menlo, Courier, monospace;
font-size: 12px;
}
pre {
margin-top: 0;
margin-bottom: 0;
font: 12px Consolas, "Liberation Mono", Menlo, Courier, monospace;
}
.select::-ms-expand {
opacity: 0;
}
.octicon {
font: normal normal normal 16px/1 octicons-link;
display: inline-block;
text-decoration: none;
text-rendering: auto;
-webkit-font-smoothing: antialiased;
-moz-osx-font-smoothing: grayscale;
-webkit-user-select: none;
-moz-user-select: none;
-ms-user-select: none;
user-select: none;
}
.octicon-link:before {
content: '\f05c';
}
.markdown-body:before {
display: table;
content: "";
}
.markdown-body:after {
display: table;
clear: both;
content: "";
}
.markdown-body>*:first-child {
margin-top: 0 !important;
}
.markdown-body>*:last-child {
margin-bottom: 0 !important;
}
a:not([href]) {
color: inherit;
text-decoration: none;
}
.anchor {
display: inline-block;
padding-right: 2px;
margin-left: -18px;
}
.anchor:focus {
outline: none;
}
h1,
h2,
h3,
h4,
h5,
h6 {
margin-top: 1em;
margin-bottom: 16px;
font-weight: bold;
line-height: 1.4;
}
h1 .octicon-link,
h2 .octicon-link,
h3 .octicon-link,
h4 .octicon-link,
h5 .octicon-link,
h6 .octicon-link {
color: #000;
vertical-align: middle;
visibility: hidden;
}
h1:hover .anchor,
h2:hover .anchor,
h3:hover .anchor,
h4:hover .anchor,
h5:hover .anchor,
h6:hover .anchor {
text-decoration: none;
}
h1:hover .anchor .octicon-link,
h2:hover .anchor .octicon-link,
h3:hover .anchor .octicon-link,
h4:hover .anchor .octicon-link,
h5:hover .anchor .octicon-link,
h6:hover .anchor .octicon-link {
visibility: visible;
}
h1 {
padding-bottom: 0.3em;
font-size: 2.25em;
line-height: 1.2;
border-bottom: 1px solid #eee;
}
h1 .anchor {
line-height: 1;
}
h2 {
padding-bottom: 0.3em;
font-size: 1.75em;
line-height: 1.225;
border-bottom: 1px solid #eee;
}
h2 .anchor {
line-height: 1;
}
h3 {
font-size: 1.5em;
line-height: 1.43;
}
h3 .anchor {
line-height: 1.2;
}
h4 {
font-size: 1.25em;
}
h4 .anchor {
line-height: 1.2;
}
h5 {
font-size: 1em;
}
h5 .anchor {
line-height: 1.1;
}
h6 {
font-size: 1em;
color: #777;
}
h6 .anchor {
line-height: 1.1;
}
p,
blockquote,
ul,
ol,
dl,
table,
pre {
margin-top: 0;
margin-bottom: 16px;
}
hr {
height: 4px;
padding: 0;
margin: 16px 0;
background-color: #e7e7e7;
border: 0 none;
}
ul,
ol {
padding-left: 2em;
}
ul ul,
ul ol,
ol ol,
ol ul {
margin-top: 0;
margin-bottom: 0;
}
li>p {
margin-top: 16px;
}
dl {
padding: 0;
}
dl dt {
padding: 0;
margin-top: 16px;
font-size: 1em;
font-style: italic;
font-weight: bold;
}
dl dd {
padding: 0 16px;
margin-bottom: 16px;
}
blockquote {
padding: 0 15px;
color: #777;
border-left: 4px solid #ddd;
}
blockquote>:first-child {
margin-top: 0;
}
blockquote>:last-child {
margin-bottom: 0;
}
table {
display: block;
width: 100%;
overflow: auto;
word-break: normal;
word-break: keep-all;
}
table th {
font-weight: bold;
}
table th,
table td {
padding: 6px 13px;
border: 1px solid #ddd;
}
table tr {
background-color: #fff;
border-top: 1px solid #ccc;
}
table tr:nth-child(2n) {
background-color: #f8f8f8;
}
img {
max-width: 100%;
box-sizing: content-box;
background-color: #fff;
}
code {
padding: 0;
padding-top: 0.2em;
padding-bottom: 0.2em;
margin: 0;
font-size: 85%;
background-color: rgba(0,0,0,0.04);
border-radius: 3px;
}
code:before,
code:after {
letter-spacing: -0.2em;
content: "\00a0";
}
pre>code {
padding: 0;
margin: 0;
font-size: 100%;
word-break: normal;
white-space: pre;
background: transparent;
border: 0;
}
.highlight {
margin-bottom: 16px;
}
.highlight pre,
pre {
padding: 16px;
overflow: auto;
font-size: 85%;
line-height: 1.45;
background-color: #f7f7f7;
border-radius: 3px;
}
.highlight pre {
margin-bottom: 0;
word-break: normal;
}
pre {
word-wrap: normal;
}
pre code {
display: inline;
max-width: initial;
padding: 0;
margin: 0;
overflow: initial;
line-height: inherit;
word-wrap: normal;
background-color: transparent;
border: 0;
}
pre code:before,
pre code:after {
content: normal;
}
kbd {
display: inline-block;
padding: 3px 5px;
font-size: 11px;
line-height: 10px;
color: #555;
vertical-align: middle;
background-color: #fcfcfc;
border: solid 1px #ccc;
border-bottom-color: #bbb;
border-radius: 3px;
box-shadow: inset 0 -1px 0 #bbb;
}
.pl-c {
color: #969896;
}
.pl-c1,
.pl-s .pl-v {
color: #0086b3;
}
.pl-e,
.pl-en {
color: #795da3;
}
.pl-s .pl-s1,
.pl-smi {
color: #333;
}
.pl-ent {
color: #63a35c;
}
.pl-k {
color: #a71d5d;
}
.pl-pds,
.pl-s,
.pl-s .pl-pse .pl-s1,
.pl-sr,
.pl-sr .pl-cce,
.pl-sr .pl-sra,
.pl-sr .pl-sre {
color: #183691;
}
.pl-v {
color: #ed6a43;
}
.pl-id {
color: #b52a1d;
}
.pl-ii {
background-color: #b52a1d;
color: #f8f8f8;
}
.pl-sr .pl-cce {
color: #63a35c;
font-weight: bold;
}
.pl-ml {
color: #693a17;
}
.pl-mh,
.pl-mh .pl-en,
.pl-ms {
color: #1d3e81;
font-weight: bold;
}
.pl-mq {
color: #008080;
}
.pl-mi {
color: #333;
font-style: italic;
}
.pl-mb {
color: #333;
font-weight: bold;
}
.pl-md {
background-color: #ffecec;
color: #bd2c00;
}
.pl-mi1 {
background-color: #eaffea;
color: #55a532;
}
.pl-mdr {
color: #795da3;
font-weight: bold;
}
.pl-mo {
color: #1d3e81;
}
kbd {
display: inline-block;
padding: 3px 5px;
font: 11px Consolas, "Liberation Mono", Menlo, Courier, monospace;
line-height: 10px;
color: #555;
vertical-align: middle;
background-color: #fcfcfc;
border: solid 1px #ccc;
border-bottom-color: #bbb;
border-radius: 3px;
box-shadow: inset 0 -1px 0 #bbb;
}
.task-list-item {
list-style-type: none;
}
.task-list-item+.task-list-item {
margin-top: 3px;
}
.task-list-item input {
margin: 0 0.35em 0.25em -1.6em;
vertical-align: middle;
}
:checked+.radio-label {
z-index: 1;
position: relative;
border-color: #4078c0;
}
.sourceLine {
display: inline-block;
}
code .kw { color: #000000; }
code .dt { color: #ed6a43; }
code .dv { color: #009999; }
code .bn { color: #009999; }
code .fl { color: #009999; }
code .ch { color: #009999; }
code .st { color: #183691; }
code .co { color: #969896; }
code .ot { color: #0086b3; }
code .al { color: #a61717; }
code .fu { color: #63a35c; }
code .er { color: #a61717; background-color: #e3d2d2; }
code .wa { color: #000000; }
code .cn { color: #008080; }
code .sc { color: #008080; }
code .vs { color: #183691; }
code .ss { color: #183691; }
code .im { color: #000000; }
code .va {color: #008080; }
code .cf { color: #000000; }
code .op { color: #000000; }
code .bu { color: #000000; }
code .ex { color: #000000; }
code .pp { color: #999999; }
code .at { color: #008080; }
code .do { color: #969896; }
code .an { color: #008080; }
code .cv { color: #008080; }
code .in { color: #008080; }
</style>
<style>
body {
  box-sizing: border-box;
  min-width: 200px;
  max-width: 980px;
  margin: 0 auto;
  padding: 45px;
  padding-top: 0px;
}
</style>

</head>

<body>

<h1 id="get-started-with-bayesian-analysis">Get Started with Bayesian Analysis</h1>
<ul>
<li><a href="#why-use-the-bayesian-framework">Why use the Bayesian Framework?</a></li>
<li><a href="#what-is-the-bayesian-framework">What is the Bayesian Framework?</a></li>
<li><a href="#a-simple-example">A simple example</a>
<ul>
<li><a href="#bayestestr-installation">BayestestR Installation</a></li>
<li><a href="#traditional-linear-regression">Traditional linear regression</a></li>
<li><a href="#bayesian-linear-regression">Bayesian linear regression</a></li>
</ul></li>
<li><a href="#references">References</a></li>
</ul>
<p>This vignette can be referred to by citing the package:</p>
<ul>
<li>Makowski, D., Ben-Shachar, M. S., &amp; Lüdecke, D. (2019). <em>bayestestR: Describing Effects and their Uncertainty, Existence and Significance within the Bayesian Framework</em>. Journal of Open Source Software, 4(40), 1541. <a href="https://doi.org/10.21105/joss.01541">https://doi.org/10.21105/joss.01541</a></li>
</ul>
<hr />
<h2 id="why-use-the-bayesian-framework">Why use the Bayesian Framework?</h2>
<p>The Bayesian framework for statistics is quickly gaining in popularity among scientists, associated with the general shift towards <strong>open and honest science</strong>. Reasons to prefer this approach are <strong>reliability</strong>, <strong>accuracy</strong> (in noisy data and small samples), the possibility of introducing <strong>prior knowledge</strong> into the analysis and, critically, <strong>results intuitiveness</strong> and their <strong>straightforward interpretation</strong> (Andrews &amp; Baguley, 2013; Etz &amp; Vandekerckhove, 2016; Kruschke, 2010; Kruschke, Aguinis, &amp; Joo, 2012; Wagenmakers et al., 2018).</p>
<p>In general, the frequentist approach has been associated with the focus on null hypothesis testing, and the misuse of <em>p</em>-values has been shown to critically contribute to the reproducibility crisis of psychological science (Chambers, Feredoes, Muthukumaraswamy, &amp; Etchells, 2014; Szucs &amp; Ioannidis, 2016). There is a general agreement that the generalization of the Bayesian approach is one way of overcoming these issues (Benjamin et al., 2018; Etz &amp; Vandekerckhove, 2016).</p>
<p>Once we agreed that the Bayesian framework is the right way to go, you might wonder <em>what</em> is the Bayesian framework.</p>
<p><strong>What’s all the fuss about?</strong></p>
<h2 id="what-is-the-bayesian-framework">What is the Bayesian Framework?</h2>
<p>Adopting the Bayesian framework is more of a shift in the paradigm than a change in the methodology. Indeed, all the common statistical procedures (t-tests, correlations, ANOVAs, regressions, …) can be achieved using the Bayesian framework. One of the core difference is that in the <strong>frequentist view</strong> (the “classic” statistics, with <em>p</em> and <em>t</em> values, as well as some weird <em>degrees of freedom</em>), <strong>the effects are fixed</strong> (but unknown) and <strong>data are random</strong>. On the other hand, in the Bayesian inference process, instead of having estimates of the “true effect”, the probability of different effects <em>given the observed data</em> is computed, resulting in a distribution of possible values for the parameters, called the <em><strong>posterior distribution</strong></em>.</p>
<p>The uncertainty in Bayesian inference can be summarized, for instance, by the <strong>median</strong> of the distribution, as well as a range of values of the posterior distribution that includes the 95% most probable values (the 95% <strong><em>credible</em> interval</strong>). <em>Cum grano salis</em>, these are considered the counterparts to the point-estimate and confidence interval in a frequentist framework. To illustrate the difference of interpretation, the Bayesian framework allows to say <em>“given the observed data, the effect has 95% probability of falling within this range”</em>, while the frequentist less straightforward alternative would be <em>“when repeatedly computing confidence intervals from data of this sort, there is a 95% probability that the effect falls within a given range”</em>. In essence, the Bayesian sampling algorithms (such as MCMC sampling) return a probability distribution (<em>the posterior</em>) of an effect that is compatible with the observed data. Thus, an effect can be described by <a href="https://easystats.github.io/bayestestR/articles/guidelines.html">characterizing its posterior distribution</a> in relation to its centrality (point-estimates), uncertainty, as well as existence and significance</p>
<p>In other words, omitting the maths behind it, we can say that:</p>
<ul>
<li>The frequentist bloke tries to estimate “the <strong>real effect</strong>”. For instance, the “real” value of the correlation between <em>x</em> and <em>y</em>. Hence, frequentist models return a “<strong>point-estimate</strong>” (<em>i.e.</em>, a single value) of the “real” correlation (<em>e.g.</em>, r = 0.42) estimated under a number of obscure assumptions (at a minimum, considering that the data is sampled at random from a “parent”, usually normal distribution).</li>
<li><strong>The Bayesian master assumes no such thing</strong>. The data are what they are. Based on this observed data (and a <strong>prior</strong> belief about the result), the Bayesian sampling algorithm (sometimes referred to for example as <strong>MCMC</strong> sampling) returns a probability distribution (called <strong>the posterior</strong>) of the effect that is compatible with the observed data. For the correlation between <em>x</em> and <em>y</em>, it will return a distribution that says, for example, “the most probable effect is 0.42, but this data is also compatible with correlations of 0.12 and 0.74”.</li>
<li>To characterize our effects, <strong>no need of <em>p</em> values</strong> or other cryptic indices. We simply describe the posterior distribution of the effect. For example, we can report the median, the <a href="https://easystats.github.io/bayestestR/articles/credible_interval.html">89% <em>Credible</em> Interval</a> or <a href="https://easystats.github.io/bayestestR/articles/guidelines.html">other indices</a>.</li>
</ul>
<div class="figure" style="text-align: center">

<img src="" alt="Accurate depiction of a regular Bayesian user estimating a credible interval." width="50%" />

<p class="caption">

<p>Accurate depiction of a regular Bayesian user estimating a credible interval.</p>
</p>

</div>

<p><em>Note: Altough the very purpose of this package is to advocate for the use of Bayesian statistics, please note that there are serious arguments supporting frequentist indices (see for instance <a href="https://discourse.datamethods.org/t/language-for-communicating-frequentist-results-about-treatment-effects/934/16">this thread</a>). As always, the world is not black and white (p &lt; .001).</em></p>
<p><strong>So… how does it work?</strong></p>
<h2 id="a-simple-example">A simple example</h2>
<h3 id="bayestestr-installation">BayestestR Installation</h3>
<p>You can install <code>bayestestR</code> along with the whole <a href="https://github.com/easystats/easystats"><strong>easystats</strong></a> suite by running the following:</p>
<div class="sourceCode" id="cb1"><pre class="sourceCode r"><code class="sourceCode r"><a class="sourceLine" id="cb1-1" title="1"><span class="kw">install.packages</span>(<span class="st">&quot;devtools&quot;</span>)</a>
<a class="sourceLine" id="cb1-2" title="2">devtools<span class="op">::</span><span class="kw">install_github</span>(<span class="st">&quot;easystats/easystats&quot;</span>)</a></code></pre></div>
<!-- Now that it's done, we can *load* the packages we need, in this case [`report`](https://github.com/easystats/report), which combines `bayestestR` and other packages together. -->

<!-- ```{r message=FALSE, warning=FALSE} -->

<!-- library(report)  # Calling library(...) enables you to use the package's functions -->

<!-- ``` -->

<p>Let’s also install and load the <a href="https://mc-stan.org/rstanarm/"><code>rstanarm</code></a>, that allows fitting Bayesian models, as well as <a href="https://github.com/easystats/bayestestR"><code>bayestestR</code></a>, to describe them.</p>
<div class="sourceCode" id="cb2"><pre class="sourceCode r"><code class="sourceCode r"><a class="sourceLine" id="cb2-1" title="1"><span class="kw">install.packages</span>(<span class="st">&quot;rstanarm&quot;</span>)</a>
<a class="sourceLine" id="cb2-2" title="2"><span class="kw">library</span>(rstanarm)</a></code></pre></div>
<h3 id="traditional-linear-regression">Traditional linear regression</h3>
<p>Let’s start by fitting a simple frequentist linear regression (the <code>lm()</code> function stands for <em>linear model</em>) between two numeric variables, <code>Sepal.Length</code> and <code>Petal.Length</code> from the famous <a href="https://en.wikipedia.org/wiki/Iris_flower_data_set"><code>iris</code></a> dataset, included by default in R.</p>
<div class="sourceCode" id="cb3"><pre class="sourceCode r"><code class="sourceCode r"><a class="sourceLine" id="cb3-1" title="1">model &lt;-<span class="st"> </span><span class="kw">lm</span>(Sepal.Length <span class="op">~</span><span class="st"> </span>Petal.Length, <span class="dt">data=</span>iris)</a>
<a class="sourceLine" id="cb3-2" title="2"><span class="kw">summary</span>(model)</a></code></pre></div>
<pre><code>
Call:
lm(formula = Sepal.Length ~ Petal.Length, data = iris)

Residuals:
    Min      1Q  Median      3Q     Max 
-1.2468 -0.2966 -0.0152  0.2768  1.0027 

Coefficients:
             Estimate Std. Error t value Pr(&gt;|t|)    
(Intercept)    4.3066     0.0784    54.9   &lt;2e-16 ***
Petal.Length   0.4089     0.0189    21.6   &lt;2e-16 ***
---
Signif. codes:  0 &#39;***&#39; 0.001 &#39;**&#39; 0.01 &#39;*&#39; 0.05 &#39;.&#39; 0.1 &#39; &#39; 1

Residual standard error: 0.41 on 148 degrees of freedom
Multiple R-squared:  0.76,  Adjusted R-squared:  0.758 
F-statistic:  469 on 1 and 148 DF,  p-value: &lt;2e-16
</code></pre>
<!-- ```{r message=FALSE, warning=FALSE, eval=FALSE} -->

<!-- model <- lm(Sepal.Length ~ Petal.Length, data=iris) -->

<!-- report(model) -->

<!-- ``` -->

<!-- ```{r echo=FALSE, message=FALSE, warning=FALSE, comment=NA} -->

<!-- library(dplyr) -->

<!-- lm(Sepal.Length ~ Petal.Length, data=iris) %>%  -->

<!--   report() %>%  -->

<!--   to_text(width=100) -->

<!-- ``` -->

<p>This analysis suggests that there is a <strong>significant</strong> (<em>whatever that means</em>) and <strong>positive</strong> (with a coefficient of <code>0.41</code>) linear relationship between the two variables.</p>
<p><em>Fitting and interpreting <strong>frequentist models is so easy</strong> that it is obvious that people use it instead of the Bayesian framework… right?</em></p>
<p><strong>Not anymore.</strong></p>
<h3 id="bayesian-linear-regression">Bayesian linear regression</h3>
<!-- ```{r message=FALSE, warning=FALSE, eval=FALSE} -->

<!-- model <- stan_glm(Sepal.Length ~ Petal.Length, data=iris) -->

<!-- report(model) -->

<!-- ``` -->

<!-- ```{r echo=FALSE, message=FALSE, warning=FALSE, comment=NA, results='hide'} -->

<!-- library(rstanarm) -->

<!-- set.seed(333) -->

<!-- model <- stan_glm(Sepal.Length ~ Petal.Length, data=iris) -->

<!-- ``` -->

<!-- ```{r echo=FALSE, message=FALSE, warning=FALSE, comment=NA} -->

<!-- model %>%  -->

<!--   report() %>%  -->

<!--   to_text(width=100) -->

<!-- ``` -->

<div class="sourceCode" id="cb5"><pre class="sourceCode r"><code class="sourceCode r"><a class="sourceLine" id="cb5-1" title="1">model &lt;-<span class="st"> </span><span class="kw">stan_glm</span>(Sepal.Length <span class="op">~</span><span class="st"> </span>Petal.Length, <span class="dt">data=</span>iris)</a>
<a class="sourceLine" id="cb5-2" title="2"><span class="kw">describe_posterior</span>(model)</a></code></pre></div>
<table>
<thead>
<tr class="header">
<th align="left">Parameter</th>
<th align="right">Median</th>
<th align="right">CI</th>
<th align="right">CI_low</th>
<th align="right">CI_high</th>
<th align="right">pd</th>
<th align="right">ROPE_CI</th>
<th align="right">ROPE_low</th>
<th align="right">ROPE_high</th>
<th align="right">ROPE_Percentage</th>
<th align="right">Rhat</th>
<th align="right">ESS</th>
</tr>
</thead>
<tbody>
<tr class="odd">
<td align="left">(Intercept)</td>
<td align="right">4.31</td>
<td align="right">89</td>
<td align="right">4.18</td>
<td align="right">4.43</td>
<td align="right">1</td>
<td align="right">89</td>
<td align="right">-0.08</td>
<td align="right">0.08</td>
<td align="right">0</td>
<td align="right">1</td>
<td align="right">4056</td>
</tr>
<tr class="even">
<td align="left">Petal.Length</td>
<td align="right">0.41</td>
<td align="right">89</td>
<td align="right">0.38</td>
<td align="right">0.44</td>
<td align="right">1</td>
<td align="right">89</td>
<td align="right">-0.08</td>
<td align="right">0.08</td>
<td align="right">0</td>
<td align="right">1</td>
<td align="right">4311</td>
</tr>
</tbody>
</table>
<p><strong>That’s it!</strong> You fitted a Bayesian version of the model by simply using <a href="https://mc-stan.org/rstanarm/reference/stan_glm.html"><code>stan_glm()</code></a> instead of <code>lm()</code> and described the posterior distributions of the parameters. The conclusion that we can drawn, for this example, are very similar. The effect (<em>the median of the effect’s posterior distribution</em>) is about <code>0.41</code>, and it can be also be considered as <em>significant</em> in the Bayesian sense (more on that later).</p>
<p><strong>So, ready to learn more?</strong> Check out the <a href="https://easystats.github.io/bayestestR/articles/example1.html"><strong>next tutorial</strong></a>!</p>
<h2 id="references">References</h2>
<div id="refs" class="references">

<div id="ref-andrews2013prior">

<p>Andrews, M., &amp; Baguley, T. (2013). Prior approval: The growth of bayesian methods in psychology. <em>British Journal of Mathematical and Statistical Psychology</em>, <em>66</em>(1), 1–7.</p>
</div>

<div id="ref-benjamin2018redefine">

<p>Benjamin, D. J., Berger, J. O., Johannesson, M., Nosek, B. A., Wagenmakers, E.-J., Berk, R., … others. (2018). Redefine statistical significance. <em>Nature Human Behaviour</em>, <em>2</em>(1), 6.</p>
</div>

<div id="ref-chambers2014instead">

<p>Chambers, C. D., Feredoes, E., Muthukumaraswamy, S. D., &amp; Etchells, P. (2014). Instead of ’playing the game’ it is time to change the rules: Registered reports at aims neuroscience and beyond. <em>AIMS Neuroscience</em>, <em>1</em>(1), 4–17.</p>
</div>

<div id="ref-etz2016bayesian">

<p>Etz, A., &amp; Vandekerckhove, J. (2016). A bayesian perspective on the reproducibility project: Psychology. <em>PloS One</em>, <em>11</em>(2), e0149794.</p>
</div>

<div id="ref-kruschke2010believe">

<p>Kruschke, J. K. (2010). What to believe: Bayesian methods for data analysis. <em>Trends in Cognitive Sciences</em>, <em>14</em>(7), 293–300.</p>
</div>

<div id="ref-kruschke2012time">

<p>Kruschke, J. K., Aguinis, H., &amp; Joo, H. (2012). The time has come: Bayesian methods for data analysis in the organizational sciences. <em>Organizational Research Methods</em>, <em>15</em>(4), 722–752.</p>
</div>

<div id="ref-szucs2016empirical">

<p>Szucs, D., &amp; Ioannidis, J. P. (2016). Empirical assessment of published effect sizes and power in the recent cognitive neuroscience and psychology literature. <em>BioRxiv</em>, 071530.</p>
</div>

<div id="ref-wagenmakers2018bayesian">

<p>Wagenmakers, E.-J., Marsman, M., Jamil, T., Ly, A., Verhagen, J., Love, J., … others. (2018). Bayesian inference for psychology. Part i: Theoretical advantages and practical ramifications. <em>Psychonomic Bulletin &amp; Review</em>, <em>25</em>(1), 35–57.</p>
</div>

</div>

</body>
</html>
back to top