https://github.com/cran/bayestestR
Revision 40f7c88ddf855896018cf20ec8a7ac5fbd0ea2fb authored by Dominique Makowski on 27 January 2020, 05:30 UTC, committed by cran-robot on 27 January 2020, 05:30 UTC
1 parent d8462ad
Raw File
Tip revision: 40f7c88ddf855896018cf20ec8a7ac5fbd0ea2fb authored by Dominique Makowski on 27 January 2020, 05:30 UTC
version 0.5.1
Tip revision: 40f7c88
example2.html
<!DOCTYPE html>

<html xmlns="http://www.w3.org/1999/xhtml">

<head>

<meta charset="utf-8">
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<meta name="generator" content="pandoc" />
<meta name="viewport" content="width=device-width, initial-scale=1">

<style type="text/css">
@font-face {
font-family: octicons-link;
src: url(data:font/woff;charset=utf-8;base64,d09GRgABAAAAAAZwABAAAAAACFQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABEU0lHAAAGaAAAAAgAAAAIAAAAAUdTVUIAAAZcAAAACgAAAAoAAQAAT1MvMgAAAyQAAABJAAAAYFYEU3RjbWFwAAADcAAAAEUAAACAAJThvmN2dCAAAATkAAAABAAAAAQAAAAAZnBnbQAAA7gAAACyAAABCUM+8IhnYXNwAAAGTAAAABAAAAAQABoAI2dseWYAAAFsAAABPAAAAZwcEq9taGVhZAAAAsgAAAA0AAAANgh4a91oaGVhAAADCAAAABoAAAAkCA8DRGhtdHgAAAL8AAAADAAAAAwGAACfbG9jYQAAAsAAAAAIAAAACABiATBtYXhwAAACqAAAABgAAAAgAA8ASm5hbWUAAAToAAABQgAAAlXu73sOcG9zdAAABiwAAAAeAAAAME3QpOBwcmVwAAAEbAAAAHYAAAB/aFGpk3jaTY6xa8JAGMW/O62BDi0tJLYQincXEypYIiGJjSgHniQ6umTsUEyLm5BV6NDBP8Tpts6F0v+k/0an2i+itHDw3v2+9+DBKTzsJNnWJNTgHEy4BgG3EMI9DCEDOGEXzDADU5hBKMIgNPZqoD3SilVaXZCER3/I7AtxEJLtzzuZfI+VVkprxTlXShWKb3TBecG11rwoNlmmn1P2WYcJczl32etSpKnziC7lQyWe1smVPy/Lt7Kc+0vWY/gAgIIEqAN9we0pwKXreiMasxvabDQMM4riO+qxM2ogwDGOZTXxwxDiycQIcoYFBLj5K3EIaSctAq2kTYiw+ymhce7vwM9jSqO8JyVd5RH9gyTt2+J/yUmYlIR0s04n6+7Vm1ozezUeLEaUjhaDSuXHwVRgvLJn1tQ7xiuVv/ocTRF42mNgZGBgYGbwZOBiAAFGJBIMAAizAFoAAABiAGIAznjaY2BkYGAA4in8zwXi+W2+MjCzMIDApSwvXzC97Z4Ig8N/BxYGZgcgl52BCSQKAA3jCV8CAABfAAAAAAQAAEB42mNgZGBg4f3vACQZQABIMjKgAmYAKEgBXgAAeNpjYGY6wTiBgZWBg2kmUxoDA4MPhGZMYzBi1AHygVLYQUCaawqDA4PChxhmh/8ODDEsvAwHgMKMIDnGL0x7gJQCAwMAJd4MFwAAAHjaY2BgYGaA4DAGRgYQkAHyGMF8NgYrIM3JIAGVYYDT+AEjAwuDFpBmA9KMDEwMCh9i/v8H8sH0/4dQc1iAmAkALaUKLgAAAHjaTY9LDsIgEIbtgqHUPpDi3gPoBVyRTmTddOmqTXThEXqrob2gQ1FjwpDvfwCBdmdXC5AVKFu3e5MfNFJ29KTQT48Ob9/lqYwOGZxeUelN2U2R6+cArgtCJpauW7UQBqnFkUsjAY/kOU1cP+DAgvxwn1chZDwUbd6CFimGXwzwF6tPbFIcjEl+vvmM/byA48e6tWrKArm4ZJlCbdsrxksL1AwWn/yBSJKpYbq8AXaaTb8AAHja28jAwOC00ZrBeQNDQOWO//sdBBgYGRiYWYAEELEwMTE4uzo5Zzo5b2BxdnFOcALxNjA6b2ByTswC8jYwg0VlNuoCTWAMqNzMzsoK1rEhNqByEyerg5PMJlYuVueETKcd/89uBpnpvIEVomeHLoMsAAe1Id4AAAAAAAB42oWQT07CQBTGv0JBhagk7HQzKxca2sJCE1hDt4QF+9JOS0nbaaYDCQfwCJ7Au3AHj+LO13FMmm6cl7785vven0kBjHCBhfpYuNa5Ph1c0e2Xu3jEvWG7UdPDLZ4N92nOm+EBXuAbHmIMSRMs+4aUEd4Nd3CHD8NdvOLTsA2GL8M9PODbcL+hD7C1xoaHeLJSEao0FEW14ckxC+TU8TxvsY6X0eLPmRhry2WVioLpkrbp84LLQPGI7c6sOiUzpWIWS5GzlSgUzzLBSikOPFTOXqly7rqx0Z1Q5BAIoZBSFihQYQOOBEdkCOgXTOHA07HAGjGWiIjaPZNW13/+lm6S9FT7rLHFJ6fQbkATOG1j2OFMucKJJsxIVfQORl+9Jyda6Sl1dUYhSCm1dyClfoeDve4qMYdLEbfqHf3O/AdDumsjAAB42mNgYoAAZQYjBmyAGYQZmdhL8zLdDEydARfoAqIAAAABAAMABwAKABMAB///AA8AAQAAAAAAAAAAAAAAAAABAAAAAA==) format('woff');
}
body {
-webkit-text-size-adjust: 100%;
text-size-adjust: 100%;
color: #333;
font-family: "Helvetica Neue", Helvetica, "Segoe UI", Arial, freesans, sans-serif, "Apple Color Emoji", "Segoe UI Emoji", "Segoe UI Symbol";
font-size: 16px;
line-height: 1.6;
word-wrap: break-word;
}
a {
background-color: transparent;
}
a:active,
a:hover {
outline: 0;
}
strong {
font-weight: bold;
}
h1 {
font-size: 2em;
margin: 0.67em 0;
}
img {
border: 0;
}
hr {
box-sizing: content-box;
height: 0;
}
pre {
overflow: auto;
}
code,
kbd,
pre {
font-family: monospace, monospace;
font-size: 1em;
}
input {
color: inherit;
font: inherit;
margin: 0;
}
html input[disabled] {
cursor: default;
}
input {
line-height: normal;
}
input[type="checkbox"] {
box-sizing: border-box;
padding: 0;
}
table {
border-collapse: collapse;
border-spacing: 0;
}
td,
th {
padding: 0;
}
* {
box-sizing: border-box;
}
input {
font: 13px / 1.4 Helvetica, arial, nimbussansl, liberationsans, freesans, clean, sans-serif, "Apple Color Emoji", "Segoe UI Emoji", "Segoe UI Symbol";
}
a {
color: #4078c0;
text-decoration: none;
}
a:hover,
a:active {
text-decoration: underline;
}
hr {
height: 0;
margin: 15px 0;
overflow: hidden;
background: transparent;
border: 0;
border-bottom: 1px solid #ddd;
}
hr:before {
display: table;
content: "";
}
hr:after {
display: table;
clear: both;
content: "";
}
h1,
h2,
h3,
h4,
h5,
h6 {
margin-top: 15px;
margin-bottom: 15px;
line-height: 1.1;
}
h1 {
font-size: 30px;
}
h2 {
font-size: 21px;
}
h3 {
font-size: 16px;
}
h4 {
font-size: 14px;
}
h5 {
font-size: 12px;
}
h6 {
font-size: 11px;
}
blockquote {
margin: 0;
}
ul,
ol {
padding: 0;
margin-top: 0;
margin-bottom: 0;
}
ol ol,
ul ol {
list-style-type: lower-roman;
}
ul ul ol,
ul ol ol,
ol ul ol,
ol ol ol {
list-style-type: lower-alpha;
}
dd {
margin-left: 0;
}
code {
font-family: Consolas, "Liberation Mono", Menlo, Courier, monospace;
font-size: 12px;
}
pre {
margin-top: 0;
margin-bottom: 0;
font: 12px Consolas, "Liberation Mono", Menlo, Courier, monospace;
}
.select::-ms-expand {
opacity: 0;
}
.octicon {
font: normal normal normal 16px/1 octicons-link;
display: inline-block;
text-decoration: none;
text-rendering: auto;
-webkit-font-smoothing: antialiased;
-moz-osx-font-smoothing: grayscale;
-webkit-user-select: none;
-moz-user-select: none;
-ms-user-select: none;
user-select: none;
}
.octicon-link:before {
content: '\f05c';
}
.markdown-body:before {
display: table;
content: "";
}
.markdown-body:after {
display: table;
clear: both;
content: "";
}
.markdown-body>*:first-child {
margin-top: 0 !important;
}
.markdown-body>*:last-child {
margin-bottom: 0 !important;
}
a:not([href]) {
color: inherit;
text-decoration: none;
}
.anchor {
display: inline-block;
padding-right: 2px;
margin-left: -18px;
}
.anchor:focus {
outline: none;
}
h1,
h2,
h3,
h4,
h5,
h6 {
margin-top: 1em;
margin-bottom: 16px;
font-weight: bold;
line-height: 1.4;
}
h1 .octicon-link,
h2 .octicon-link,
h3 .octicon-link,
h4 .octicon-link,
h5 .octicon-link,
h6 .octicon-link {
color: #000;
vertical-align: middle;
visibility: hidden;
}
h1:hover .anchor,
h2:hover .anchor,
h3:hover .anchor,
h4:hover .anchor,
h5:hover .anchor,
h6:hover .anchor {
text-decoration: none;
}
h1:hover .anchor .octicon-link,
h2:hover .anchor .octicon-link,
h3:hover .anchor .octicon-link,
h4:hover .anchor .octicon-link,
h5:hover .anchor .octicon-link,
h6:hover .anchor .octicon-link {
visibility: visible;
}
h1 {
padding-bottom: 0.3em;
font-size: 2.25em;
line-height: 1.2;
border-bottom: 1px solid #eee;
}
h1 .anchor {
line-height: 1;
}
h2 {
padding-bottom: 0.3em;
font-size: 1.75em;
line-height: 1.225;
border-bottom: 1px solid #eee;
}
h2 .anchor {
line-height: 1;
}
h3 {
font-size: 1.5em;
line-height: 1.43;
}
h3 .anchor {
line-height: 1.2;
}
h4 {
font-size: 1.25em;
}
h4 .anchor {
line-height: 1.2;
}
h5 {
font-size: 1em;
}
h5 .anchor {
line-height: 1.1;
}
h6 {
font-size: 1em;
color: #777;
}
h6 .anchor {
line-height: 1.1;
}
p,
blockquote,
ul,
ol,
dl,
table,
pre {
margin-top: 0;
margin-bottom: 16px;
}
hr {
height: 4px;
padding: 0;
margin: 16px 0;
background-color: #e7e7e7;
border: 0 none;
}
ul,
ol {
padding-left: 2em;
}
ul ul,
ul ol,
ol ol,
ol ul {
margin-top: 0;
margin-bottom: 0;
}
li>p {
margin-top: 16px;
}
dl {
padding: 0;
}
dl dt {
padding: 0;
margin-top: 16px;
font-size: 1em;
font-style: italic;
font-weight: bold;
}
dl dd {
padding: 0 16px;
margin-bottom: 16px;
}
blockquote {
padding: 0 15px;
color: #777;
border-left: 4px solid #ddd;
}
blockquote>:first-child {
margin-top: 0;
}
blockquote>:last-child {
margin-bottom: 0;
}
table {
display: block;
width: 100%;
overflow: auto;
word-break: normal;
word-break: keep-all;
}
table th {
font-weight: bold;
}
table th,
table td {
padding: 6px 13px;
border: 1px solid #ddd;
}
table tr {
background-color: #fff;
border-top: 1px solid #ccc;
}
table tr:nth-child(2n) {
background-color: #f8f8f8;
}
img {
max-width: 100%;
box-sizing: content-box;
background-color: #fff;
}
code {
padding: 0;
padding-top: 0.2em;
padding-bottom: 0.2em;
margin: 0;
font-size: 85%;
background-color: rgba(0,0,0,0.04);
border-radius: 3px;
}
code:before,
code:after {
letter-spacing: -0.2em;
content: "\00a0";
}
pre>code {
padding: 0;
margin: 0;
font-size: 100%;
word-break: normal;
white-space: pre;
background: transparent;
border: 0;
}
.highlight {
margin-bottom: 16px;
}
.highlight pre,
pre {
padding: 16px;
overflow: auto;
font-size: 85%;
line-height: 1.45;
background-color: #f7f7f7;
border-radius: 3px;
}
.highlight pre {
margin-bottom: 0;
word-break: normal;
}
pre {
word-wrap: normal;
}
pre code {
display: inline;
max-width: initial;
padding: 0;
margin: 0;
overflow: initial;
line-height: inherit;
word-wrap: normal;
background-color: transparent;
border: 0;
}
pre code:before,
pre code:after {
content: normal;
}
kbd {
display: inline-block;
padding: 3px 5px;
font-size: 11px;
line-height: 10px;
color: #555;
vertical-align: middle;
background-color: #fcfcfc;
border: solid 1px #ccc;
border-bottom-color: #bbb;
border-radius: 3px;
box-shadow: inset 0 -1px 0 #bbb;
}
.pl-c {
color: #969896;
}
.pl-c1,
.pl-s .pl-v {
color: #0086b3;
}
.pl-e,
.pl-en {
color: #795da3;
}
.pl-s .pl-s1,
.pl-smi {
color: #333;
}
.pl-ent {
color: #63a35c;
}
.pl-k {
color: #a71d5d;
}
.pl-pds,
.pl-s,
.pl-s .pl-pse .pl-s1,
.pl-sr,
.pl-sr .pl-cce,
.pl-sr .pl-sra,
.pl-sr .pl-sre {
color: #183691;
}
.pl-v {
color: #ed6a43;
}
.pl-id {
color: #b52a1d;
}
.pl-ii {
background-color: #b52a1d;
color: #f8f8f8;
}
.pl-sr .pl-cce {
color: #63a35c;
font-weight: bold;
}
.pl-ml {
color: #693a17;
}
.pl-mh,
.pl-mh .pl-en,
.pl-ms {
color: #1d3e81;
font-weight: bold;
}
.pl-mq {
color: #008080;
}
.pl-mi {
color: #333;
font-style: italic;
}
.pl-mb {
color: #333;
font-weight: bold;
}
.pl-md {
background-color: #ffecec;
color: #bd2c00;
}
.pl-mi1 {
background-color: #eaffea;
color: #55a532;
}
.pl-mdr {
color: #795da3;
font-weight: bold;
}
.pl-mo {
color: #1d3e81;
}
kbd {
display: inline-block;
padding: 3px 5px;
font: 11px Consolas, "Liberation Mono", Menlo, Courier, monospace;
line-height: 10px;
color: #555;
vertical-align: middle;
background-color: #fcfcfc;
border: solid 1px #ccc;
border-bottom-color: #bbb;
border-radius: 3px;
box-shadow: inset 0 -1px 0 #bbb;
}
.task-list-item {
list-style-type: none;
}
.task-list-item+.task-list-item {
margin-top: 3px;
}
.task-list-item input {
margin: 0 0.35em 0.25em -1.6em;
vertical-align: middle;
}
:checked+.radio-label {
z-index: 1;
position: relative;
border-color: #4078c0;
}
.sourceLine {
display: inline-block;
}
code .kw { color: #000000; }
code .dt { color: #ed6a43; }
code .dv { color: #009999; }
code .bn { color: #009999; }
code .fl { color: #009999; }
code .ch { color: #009999; }
code .st { color: #183691; }
code .co { color: #969896; }
code .ot { color: #0086b3; }
code .al { color: #a61717; }
code .fu { color: #63a35c; }
code .er { color: #a61717; background-color: #e3d2d2; }
code .wa { color: #000000; }
code .cn { color: #008080; }
code .sc { color: #008080; }
code .vs { color: #183691; }
code .ss { color: #183691; }
code .im { color: #000000; }
code .va {color: #008080; }
code .cf { color: #000000; }
code .op { color: #000000; }
code .bu { color: #000000; }
code .ex { color: #000000; }
code .pp { color: #999999; }
code .at { color: #008080; }
code .do { color: #969896; }
code .an { color: #008080; }
code .cv { color: #008080; }
code .in { color: #008080; }
</style>
<style>
body {
  box-sizing: border-box;
  min-width: 200px;
  max-width: 980px;
  margin: 0 auto;
  padding: 45px;
  padding-top: 0px;
}
</style>

</head>

<body>

<h1 id="2-confirmation-of-bayesian-skills">2. Confirmation of Bayesian skills</h1>
<ul>
<li><a href="#correlations">Correlations</a>
<ul>
<li><a href="#frequentist-version">Frequentist version</a></li>
<li><a href="#bayesian-correlation">Bayesian correlation</a></li>
<li><a href="#bayes-factor-bf">Bayes factor (BF)</a></li>
<li><a href="#visualise-the-bayes-factor">Visualise the Bayes factor</a></li>
</ul></li>
<li><a href="#t-tests"><em>t</em>-tests</a>
<ul>
<li><a href="#versicolor-vs.-virginica">Versicolor <em>vs.</em> virginica</a></li>
<li><a href="#compute-the-bayesian-t-test">Compute the Bayesian <em>t</em>-test</a></li>
</ul></li>
<li><a href="#logistic-model">Logistic Model</a>
<ul>
<li><a href="#fit-the-model">Fit the model</a></li>
<li><a href="#visualise-the-model">Visualise the model</a></li>
<li><a href="#performance-and-parameters">Performance and Parameters</a></li>
<li><a href="#visualise-the-indices">Visualise the indices</a></li>
<li><a href="#diagnostic-indices">Diagnostic Indices</a></li>
</ul></li>
</ul>
<p>This vignette can be referred to by citing the package:</p>
<ul>
<li>Makowski, D., Ben-Shachar, M. S., &amp; Lüdecke, D. (2019). <em>bayestestR: Describing Effects and their Uncertainty, Existence and Significance within the Bayesian Framework</em>. Journal of Open Source Software, 4(40), 1541. <a href="https://doi.org/10.21105/joss.01541">https://doi.org/10.21105/joss.01541</a></li>
</ul>
<hr />
<p>Now that <a href="https://easystats.github.io/bayestestR/articles/example1.html"><strong>describing and understanding posterior distributions</strong></a> of linear regressions has no secrets for you, we will take one step back and study some simpler models: <strong>correlations</strong> and <strong><em>t</em>-tests</strong>.</p>
<p>But before we do that, let us take a moment to remind ourselves and appreciate the fact that <strong>all basic statistical pocedures</strong> such as correlations, <em>t</em>-tests, ANOVAs or Chisquare tests <strong><em>are</em> linear regressions</strong> (we strongly recommend <a href="https://lindeloev.github.io/tests-as-linear/">this excellent demonstration</a>). Nevertheless, these simple models will be the occasion to introduce a more complex index, such as the <strong>Bayes factor</strong>.</p>
<h2 id="correlations">Correlations</h2>
<h3 id="frequentist-version">Frequentist version</h3>
<p>Let us start, again, with a <strong>frequentist correlation</strong> between two continuous variables, the <strong>width</strong> and the <strong>length</strong> of the sepals of some flowers. The data is available in R as the <code>iris</code> dataset (the same that was used in the <a href="https://easystats.github.io/bayestestR/articles/example1.html">previous tutorial</a>).</p>
<p>We will compute a Pearson’s correlation test, store the results in an object called <code>result</code>, then display it:</p>
<div class="sourceCode" id="cb1"><pre class="sourceCode r"><code class="sourceCode r"><a class="sourceLine" id="cb1-1" title="1">result &lt;-<span class="st"> </span><span class="kw">cor.test</span>(iris<span class="op">$</span>Sepal.Width, iris<span class="op">$</span>Sepal.Length)</a>
<a class="sourceLine" id="cb1-2" title="2">result</a></code></pre></div>
<pre><code>&gt; 
&gt;   Pearson&#39;s product-moment correlation
&gt; 
&gt; data:  iris$Sepal.Width and iris$Sepal.Length
&gt; t = -1, df = 148, p-value = 0.2
&gt; alternative hypothesis: true correlation is not equal to 0
&gt; 95 percent confidence interval:
&gt;  -0.273  0.044
&gt; sample estimates:
&gt;   cor 
&gt; -0.12
</code></pre>
<p>As you can see in the output, the test that we did actually compared two hypotheses: the <strong>null hypothesis</strong> (<em>h0</em>; no correlation) with the <strong>alternative hypothesis</strong> (<em>h1</em>; a non-null correlation). Based on the <em>p</em>-value, the null hypothesis cannot be rejected: the correlation between the two variables is <strong>negative but not significant</strong> (r = -.12, p &gt; .05).</p>
<h3 id="bayesian-correlation">Bayesian correlation</h3>
<p>To compute a Bayesian correlation test, we will need the <a href="https://richarddmorey.github.io/BayesFactor/"><code>BayesFactor</code></a> package (you can install it by running <code>install.packages(&quot;BayesFactor&quot;)</code>). We can then load this package, compute the correlation using the <code>correlationBF()</code> function and store the results in a similar fashion.</p>
<div class="sourceCode" id="cb3"><pre class="sourceCode r"><code class="sourceCode r"><a class="sourceLine" id="cb3-1" title="1"><span class="kw">library</span>(BayesFactor)</a>
<a class="sourceLine" id="cb3-2" title="2">result &lt;-<span class="st"> </span><span class="kw">correlationBF</span>(iris<span class="op">$</span>Sepal.Width, iris<span class="op">$</span>Sepal.Length)</a></code></pre></div>
<p>Now, let us run our <code>describe_posterior()</code> function on that:</p>
<div class="sourceCode" id="cb4"><pre class="sourceCode r"><code class="sourceCode r"><a class="sourceLine" id="cb4-1" title="1"><span class="kw">describe_posterior</span>(result)</a></code></pre></div>
<pre><code>&gt;   Parameter Median CI CI_low CI_high pd ROPE_CI ROPE_low ROPE_high
&gt; 1       rho  -0.11 89  -0.24  0.0079 92      89     -0.1       0.1
&gt;   ROPE_Percentage   BF Prior_Distribution Prior_Location Prior_Scale
&gt; 1              42 0.51             cauchy              0        0.33
</code></pre>
<p>We see again many things here, but the important indices for now are the <strong>median</strong> of the posterior distribution, <code>-.11</code>. This is (again) quite close to the frequentist correlation. We could, as previously, describe the <a href="https://easystats.github.io/bayestestR/articles/credible_interval.html"><strong>credible interval</strong></a>, the <a href="https://easystats.github.io/bayestestR/articles/probability_of_direction.html"><strong>pd</strong></a> or the <a href="https://easystats.github.io/bayestestR/articles/region_of_practical_equivalence.html"><strong>ROPE percentage</strong></a>, but we will focus here on another index provided by the Bayesian framework, the <strong>Bayes factor (BF)</strong>.</p>
<h3 id="bayes-factor-bf">Bayes factor (BF)</h3>
<p>We said previously that a correlation test actually compares two hypotheses, a null (absence of effect) with an altnernative one (presence of an effect). The <a href="https://easystats.github.io/bayestestR/articles/bayes_factors.html"><strong>Bayes factor (BF)</strong></a> allows the same comparison and determines <strong>under which of two models the observed data are more probable</strong>: a model with the effect of interest, and a null model without the effect of interest. We can use <code>bayesfactor()</code> to specifically compute the Bayes factor comparing those models:</p>
<div class="sourceCode" id="cb6"><pre class="sourceCode r"><code class="sourceCode r"><a class="sourceLine" id="cb6-1" title="1"><span class="kw">bayesfactor</span>(result)</a></code></pre></div>
<pre><code>&gt; # Bayes Factors for Model Comparison
&gt; 
&gt;   Model               BF
&gt;   [2] Alt., r=0.333 0.51
&gt; 
&gt; * Against Denominator: [1] Null, rho = 0
&gt; *   Bayes Factor Type: JZS (BayesFactor)
</code></pre>
<p>We got a <em>BF</em> of <code>0.51</code>. What does it mean?</p>
<p>Bayes factors are <strong>continuous measures of relative evidence</strong>, with a Bayes factor greater than 1 giving evidence in favour of one of the models (often referred to as <em>the numerator</em>), and a Bayes factor smaller than 1 giving evidence in favour of the other model (<em>the denominator</em>).</p>
<blockquote>
<p><strong>Yes, you heard things right, evidence in favour of the null!</strong></p>
</blockquote>
<p>That’s one of the reason why the Bayesian framework is sometimes considered as superior to the frequentist framework. Remember from your stats lessons, that the <strong><em>p</em>-value can only be used to reject <em>h0</em></strong>, but not <em>accept</em> it. With the <strong>Bayes factor</strong>, you can measure <strong>evidence against - and in favour of - the null</strong>.</p>
<p>BFs representing evidence for the alternative against the null can be reversed using (BF_{01}=1/BF_{10}) (the <em>01</em> and <em>10</em> correspond to <em>h0</em> against <em>h1</em> and <em>h1</em> against <em>h0</em>, respectively) to provide evidence of the null againtt the alternative. This improves human readability in cases where the BF of the alternative against the null is smaller than 1 (i.e., in support of the null).</p>
<p>In our case, <code>BF = 1/0.51 = 2</code>, indicates that the data are <strong>2 times more probable under the null compared to the alternative hypothesis</strong>, which, though favouring the null, is considered only <a href="https://easystats.github.io/report/articles/interpret_metrics.html#bayes-factor-bf">anecdotal evidence against the null</a>.</p>
<p>We can thus conclude that there is <strong>anecdotal evidence in favour of an absence of correlation between the two variables (r<sub>median</sub> = 0.11, BF = 0.51)</strong>, which is a much more informative statement that what we can do with frequentist statistics.</p>
<p><strong>And that’s not all!</strong></p>
<h3 id="visualise-the-bayes-factor">Visualise the Bayes factor</h3>
<p>In general, <strong>pie charts are an absolute no-go in data visualisation</strong>, as our brain’s perceptive system heavily distorts the information presented in such way. Nevertheless, there is one exeption: pizza charts.</p>
<p>It is an intuitive way of interpreting the strength of evidence provided by BFs as an amount of surprise.</p>
<div class="figure" style="text-align: center">

<img src="" alt="Wagenmakers&#39; pizza poking analogy. From the great &#39;www.bayesianspectacles.org&#39; blog." width="80%" />

<p class="caption">

<p>Wagenmakers’ pizza poking analogy. From the great ‘www.bayesianspectacles.org’ blog.</p>
</p>

</div>

<p>Such “pizza plots” can be directly created through the <a href="https://github.com/easystats/see"><code>see</code></a> visualisation companion package for easystats (you can install it by running <code>install.packages(&quot;see&quot;)</code>):</p>
<div class="sourceCode" id="cb8"><pre class="sourceCode r"><code class="sourceCode r"><a class="sourceLine" id="cb8-1" title="1"><span class="kw">library</span>(see)</a>
<a class="sourceLine" id="cb8-2" title="2"></a>
<a class="sourceLine" id="cb8-3" title="3"><span class="kw">plot</span>(<span class="kw">bayesfactor</span>(result)) <span class="op">+</span></a>
<a class="sourceLine" id="cb8-4" title="4"><span class="st">  </span><span class="kw">scale_fill_pizza</span>()</a></code></pre></div>
<p><img src="" /><!-- --></p>
<p>So, after seeing this pizza, how much would you be suprised by the outcome of a blinded poke?</p>
<h2 id="t-tests"><em>t</em>-tests</h2>
<p><strong><em>“I know that I know nothing, and especially not if <em>versicolor</em> and <em>virginica</em> differ in terms of Sepal.Width”</em>, famously said Socrates</strong>. Time to finally answer this answer this crucial question!</p>
<h3 id="versicolor-vs-virginica">Versicolor <em>vs.</em> virginica</h3>
<p>Bayesian <em>t</em>-tests can be performed in a very similar way to correlations. As we are particularly interested in two levels of the <code>Species</code> factor, <em>versicolor</em> and <em>virginica</em>. We will start by filtering out from <code>iris</code> the non-relevant observations corresponding to the <em>setosa</em> specie, and we will then visualise the observations and the distribution of the <code>Sepal.Width</code> variable.</p>
<div class="sourceCode" id="cb9"><pre class="sourceCode r"><code class="sourceCode r"><a class="sourceLine" id="cb9-1" title="1"><span class="kw">library</span>(dplyr)</a>
<a class="sourceLine" id="cb9-2" title="2"><span class="kw">library</span>(ggplot2)</a>
<a class="sourceLine" id="cb9-3" title="3"></a>
<a class="sourceLine" id="cb9-4" title="4"><span class="co"># Select only two relevant species</span></a>
<a class="sourceLine" id="cb9-5" title="5">data &lt;-<span class="st"> </span>iris <span class="op">%&gt;%</span><span class="st"> </span></a>
<a class="sourceLine" id="cb9-6" title="6"><span class="st">  </span><span class="kw">filter</span>(Species <span class="op">!=</span><span class="st"> &quot;setosa&quot;</span>) <span class="op">%&gt;%</span><span class="st"> </span></a>
<a class="sourceLine" id="cb9-7" title="7"><span class="st">  </span><span class="kw">droplevels</span>()</a>
<a class="sourceLine" id="cb9-8" title="8"></a>
<a class="sourceLine" id="cb9-9" title="9"><span class="co"># Visualise distributions and observations</span></a>
<a class="sourceLine" id="cb9-10" title="10">data <span class="op">%&gt;%</span><span class="st"> </span></a>
<a class="sourceLine" id="cb9-11" title="11"><span class="st">  </span><span class="kw">ggplot</span>(<span class="kw">aes</span>(<span class="dt">x =</span> Species, <span class="dt">y =</span> Sepal.Width, <span class="dt">fill =</span> Species)) <span class="op">+</span></a>
<a class="sourceLine" id="cb9-12" title="12"><span class="st">  </span><span class="kw">geom_violindot</span>(<span class="dt">fill_dots =</span> <span class="st">&quot;black&quot;</span>, <span class="dt">size_dots =</span> <span class="dv">1</span>) <span class="op">+</span></a>
<a class="sourceLine" id="cb9-13" title="13"><span class="st">  </span><span class="kw">scale_fill_material</span>() <span class="op">+</span></a>
<a class="sourceLine" id="cb9-14" title="14"><span class="st">  </span><span class="kw">theme_modern</span>()</a></code></pre></div>
<p><img src="" /><!-- --></p>
<p>It <em>seems</em> (visually) that <em>virgnica</em> flowers have, on average, a slightly higer width of sepals. Let’s assess this difference statistically by using the <code>ttestBF</code> in the <code>BayesFactor</code> package.</p>
<h3 id="compute-the-bayesian-t-test">Compute the Bayesian <em>t</em>-test</h3>
<div class="sourceCode" id="cb10"><pre class="sourceCode r"><code class="sourceCode r"><a class="sourceLine" id="cb10-1" title="1">result &lt;-<span class="st"> </span>BayesFactor<span class="op">::</span><span class="kw">ttestBF</span>(<span class="dt">formula =</span> Sepal.Width <span class="op">~</span><span class="st"> </span>Species, <span class="dt">data =</span> data)</a>
<a class="sourceLine" id="cb10-2" title="2"><span class="kw">describe_posterior</span>(result)</a></code></pre></div>
<pre><code>&gt;    Parameter Median CI CI_low CI_high pd ROPE_CI ROPE_low ROPE_high
&gt; 1 Difference  -0.19 89  -0.29  -0.089  1      89     -0.1       0.1
&gt;   ROPE_Percentage BF Prior_Distribution Prior_Location Prior_Scale
&gt; 1           0.028 18             cauchy              0        0.71
</code></pre>
<p>From the indices, we can say that the difference of <code>Sepal.Width</code> between <em>virginica</em> and <em>versicolor</em> has a probability of <strong>100% of being negative</strong> [<em>from the pd and the sign of the median</em>] (median = -0.19, 89% CI [-0.29, -0.092]). The data provides a <strong>strong evidence against the null hypothesis</strong> (BF = 18).</p>
<p>Keep that in mind as we will see another way of investigating this question.</p>
<h2 id="logistic-model">Logistic Model</h2>
<p>A hypothesis for which one uses a <em>t</em>-test can also be tested using a binomial model (<em>e.g.</em>, a <strong>logistic model</strong>). Indeed, it is possible to reformulate the following hypothesis, “<em>there is an important difference in this variable between the two groups</em>” by “<em>this variable is able to discriminate between (or classify) the two groups</em>”. However, these models are much more powerful than a regular <em>t</em>-test.</p>
<p>In the case of the difference of <code>Sepal.Width</code> between <em>virginica</em> and <em>versicolor</em>, the question becomes, <em>how well can we classify the two species using only</em> <code>Sepal.Width</code>.</p>
<h3 id="fit-the-model">Fit the model</h3>
<div class="sourceCode" id="cb12"><pre class="sourceCode r"><code class="sourceCode r"><a class="sourceLine" id="cb12-1" title="1"><span class="kw">library</span>(rstanarm)</a>
<a class="sourceLine" id="cb12-2" title="2"></a>
<a class="sourceLine" id="cb12-3" title="3">model &lt;-<span class="st"> </span><span class="kw">stan_glm</span>(Species <span class="op">~</span><span class="st"> </span>Sepal.Width, <span class="dt">data =</span> data, <span class="dt">family =</span> <span class="st">&quot;binomial&quot;</span>)</a></code></pre></div>
<h3 id="visualise-the-model">Visualise the model</h3>
<p>Using the <a href="https://github.com/easystats/estimate"><code>estimate</code></a> package. <strong>Wait until estimate is on CRAN</strong>.</p>
<h3 id="performance-and-parameters">Performance and Parameters</h3>
<p>TO DO.</p>
<div class="sourceCode" id="cb13"><pre class="sourceCode r"><code class="sourceCode r"><a class="sourceLine" id="cb13-1" title="1"><span class="kw">library</span>(performance)</a>
<a class="sourceLine" id="cb13-2" title="2"></a>
<a class="sourceLine" id="cb13-3" title="3"><span class="kw">model_performance</span>(model)</a></code></pre></div>
<pre><code>&gt; Can&#39;t calculate log-loss.

&gt; # Indices of model performance
&gt; 
&gt;  ELPD ELPD_SE LOOIC LOOIC_SE WAIC    R2 RMSE LOGLOSS SCORE_LOG SCORE_SPHERICAL
&gt;   -66     3.1   133      6.1  133 0.099 0.48      NA      -106            0.01
</code></pre>
<div class="sourceCode" id="cb15"><pre class="sourceCode r"><code class="sourceCode r"><a class="sourceLine" id="cb15-1" title="1"><span class="kw">describe_posterior</span>(model, <span class="dt">test =</span> <span class="kw">c</span>(<span class="st">&quot;pd&quot;</span>, <span class="st">&quot;ROPE&quot;</span>, <span class="st">&quot;BF&quot;</span>))</a></code></pre></div>
<pre><code>&gt; # Description of Posterior Distributions
&gt; 
&gt; Parameter   | Median | CI | CI_low | CI_high |    pd | ROPE_CI | ROPE_low | ROPE_high | ROPE_Percentage |    BF |  Rhat |  ESS
&gt; ------------------------------------------------------------------------------------------------------------------------------
&gt; (Intercept) | -6.116 | 89 | -9.590 |  -3.020 | 0.999 |      89 |   -0.181 |     0.181 |               0 | 8.498 | 0.999 | 2689
&gt; Sepal.Width |  2.131 | 89 |  0.986 |   3.262 | 0.999 |      89 |   -0.181 |     0.181 |               0 | 9.132 | 0.999 | 2712
</code></pre>
<h3 id="visualise-the-indices">Visualise the indices</h3>
<p>TO DO.</p>
<div class="sourceCode" id="cb17"><pre class="sourceCode r"><code class="sourceCode r"><a class="sourceLine" id="cb17-1" title="1"><span class="co"># plot(rope(result))</span></a></code></pre></div>
<h3 id="diagnostic-indices">Diagnostic Indices</h3>
<p>About diagnostic indices such as Rhat and ESS.</p>

</body>
</html>
back to top