https://github.com/cran/bayestestR
Revision 40f7c88ddf855896018cf20ec8a7ac5fbd0ea2fb authored by Dominique Makowski on 27 January 2020, 05:30 UTC, committed by cran-robot on 27 January 2020, 05:30 UTC
1 parent d8462ad
Raw File
Tip revision: 40f7c88ddf855896018cf20ec8a7ac5fbd0ea2fb authored by Dominique Makowski on 27 January 2020, 05:30 UTC
version 0.5.1
Tip revision: 40f7c88
indicesEstimationComparison.html
<!DOCTYPE html>

<html xmlns="http://www.w3.org/1999/xhtml">

<head>

<meta charset="utf-8">
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<meta name="generator" content="pandoc" />
<meta name="viewport" content="width=device-width, initial-scale=1">

<style type="text/css">
@font-face {
font-family: octicons-link;
src: url(data:font/woff;charset=utf-8;base64,d09GRgABAAAAAAZwABAAAAAACFQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABEU0lHAAAGaAAAAAgAAAAIAAAAAUdTVUIAAAZcAAAACgAAAAoAAQAAT1MvMgAAAyQAAABJAAAAYFYEU3RjbWFwAAADcAAAAEUAAACAAJThvmN2dCAAAATkAAAABAAAAAQAAAAAZnBnbQAAA7gAAACyAAABCUM+8IhnYXNwAAAGTAAAABAAAAAQABoAI2dseWYAAAFsAAABPAAAAZwcEq9taGVhZAAAAsgAAAA0AAAANgh4a91oaGVhAAADCAAAABoAAAAkCA8DRGhtdHgAAAL8AAAADAAAAAwGAACfbG9jYQAAAsAAAAAIAAAACABiATBtYXhwAAACqAAAABgAAAAgAA8ASm5hbWUAAAToAAABQgAAAlXu73sOcG9zdAAABiwAAAAeAAAAME3QpOBwcmVwAAAEbAAAAHYAAAB/aFGpk3jaTY6xa8JAGMW/O62BDi0tJLYQincXEypYIiGJjSgHniQ6umTsUEyLm5BV6NDBP8Tpts6F0v+k/0an2i+itHDw3v2+9+DBKTzsJNnWJNTgHEy4BgG3EMI9DCEDOGEXzDADU5hBKMIgNPZqoD3SilVaXZCER3/I7AtxEJLtzzuZfI+VVkprxTlXShWKb3TBecG11rwoNlmmn1P2WYcJczl32etSpKnziC7lQyWe1smVPy/Lt7Kc+0vWY/gAgIIEqAN9we0pwKXreiMasxvabDQMM4riO+qxM2ogwDGOZTXxwxDiycQIcoYFBLj5K3EIaSctAq2kTYiw+ymhce7vwM9jSqO8JyVd5RH9gyTt2+J/yUmYlIR0s04n6+7Vm1ozezUeLEaUjhaDSuXHwVRgvLJn1tQ7xiuVv/ocTRF42mNgZGBgYGbwZOBiAAFGJBIMAAizAFoAAABiAGIAznjaY2BkYGAA4in8zwXi+W2+MjCzMIDApSwvXzC97Z4Ig8N/BxYGZgcgl52BCSQKAA3jCV8CAABfAAAAAAQAAEB42mNgZGBg4f3vACQZQABIMjKgAmYAKEgBXgAAeNpjYGY6wTiBgZWBg2kmUxoDA4MPhGZMYzBi1AHygVLYQUCaawqDA4PChxhmh/8ODDEsvAwHgMKMIDnGL0x7gJQCAwMAJd4MFwAAAHjaY2BgYGaA4DAGRgYQkAHyGMF8NgYrIM3JIAGVYYDT+AEjAwuDFpBmA9KMDEwMCh9i/v8H8sH0/4dQc1iAmAkALaUKLgAAAHjaTY9LDsIgEIbtgqHUPpDi3gPoBVyRTmTddOmqTXThEXqrob2gQ1FjwpDvfwCBdmdXC5AVKFu3e5MfNFJ29KTQT48Ob9/lqYwOGZxeUelN2U2R6+cArgtCJpauW7UQBqnFkUsjAY/kOU1cP+DAgvxwn1chZDwUbd6CFimGXwzwF6tPbFIcjEl+vvmM/byA48e6tWrKArm4ZJlCbdsrxksL1AwWn/yBSJKpYbq8AXaaTb8AAHja28jAwOC00ZrBeQNDQOWO//sdBBgYGRiYWYAEELEwMTE4uzo5Zzo5b2BxdnFOcALxNjA6b2ByTswC8jYwg0VlNuoCTWAMqNzMzsoK1rEhNqByEyerg5PMJlYuVueETKcd/89uBpnpvIEVomeHLoMsAAe1Id4AAAAAAAB42oWQT07CQBTGv0JBhagk7HQzKxca2sJCE1hDt4QF+9JOS0nbaaYDCQfwCJ7Au3AHj+LO13FMmm6cl7785vven0kBjHCBhfpYuNa5Ph1c0e2Xu3jEvWG7UdPDLZ4N92nOm+EBXuAbHmIMSRMs+4aUEd4Nd3CHD8NdvOLTsA2GL8M9PODbcL+hD7C1xoaHeLJSEao0FEW14ckxC+TU8TxvsY6X0eLPmRhry2WVioLpkrbp84LLQPGI7c6sOiUzpWIWS5GzlSgUzzLBSikOPFTOXqly7rqx0Z1Q5BAIoZBSFihQYQOOBEdkCOgXTOHA07HAGjGWiIjaPZNW13/+lm6S9FT7rLHFJ6fQbkATOG1j2OFMucKJJsxIVfQORl+9Jyda6Sl1dUYhSCm1dyClfoeDve4qMYdLEbfqHf3O/AdDumsjAAB42mNgYoAAZQYjBmyAGYQZmdhL8zLdDEydARfoAqIAAAABAAMABwAKABMAB///AA8AAQAAAAAAAAAAAAAAAAABAAAAAA==) format('woff');
}
body {
-webkit-text-size-adjust: 100%;
text-size-adjust: 100%;
color: #333;
font-family: "Helvetica Neue", Helvetica, "Segoe UI", Arial, freesans, sans-serif, "Apple Color Emoji", "Segoe UI Emoji", "Segoe UI Symbol";
font-size: 16px;
line-height: 1.6;
word-wrap: break-word;
}
a {
background-color: transparent;
}
a:active,
a:hover {
outline: 0;
}
strong {
font-weight: bold;
}
h1 {
font-size: 2em;
margin: 0.67em 0;
}
img {
border: 0;
}
hr {
box-sizing: content-box;
height: 0;
}
pre {
overflow: auto;
}
code,
kbd,
pre {
font-family: monospace, monospace;
font-size: 1em;
}
input {
color: inherit;
font: inherit;
margin: 0;
}
html input[disabled] {
cursor: default;
}
input {
line-height: normal;
}
input[type="checkbox"] {
box-sizing: border-box;
padding: 0;
}
table {
border-collapse: collapse;
border-spacing: 0;
}
td,
th {
padding: 0;
}
* {
box-sizing: border-box;
}
input {
font: 13px / 1.4 Helvetica, arial, nimbussansl, liberationsans, freesans, clean, sans-serif, "Apple Color Emoji", "Segoe UI Emoji", "Segoe UI Symbol";
}
a {
color: #4078c0;
text-decoration: none;
}
a:hover,
a:active {
text-decoration: underline;
}
hr {
height: 0;
margin: 15px 0;
overflow: hidden;
background: transparent;
border: 0;
border-bottom: 1px solid #ddd;
}
hr:before {
display: table;
content: "";
}
hr:after {
display: table;
clear: both;
content: "";
}
h1,
h2,
h3,
h4,
h5,
h6 {
margin-top: 15px;
margin-bottom: 15px;
line-height: 1.1;
}
h1 {
font-size: 30px;
}
h2 {
font-size: 21px;
}
h3 {
font-size: 16px;
}
h4 {
font-size: 14px;
}
h5 {
font-size: 12px;
}
h6 {
font-size: 11px;
}
blockquote {
margin: 0;
}
ul,
ol {
padding: 0;
margin-top: 0;
margin-bottom: 0;
}
ol ol,
ul ol {
list-style-type: lower-roman;
}
ul ul ol,
ul ol ol,
ol ul ol,
ol ol ol {
list-style-type: lower-alpha;
}
dd {
margin-left: 0;
}
code {
font-family: Consolas, "Liberation Mono", Menlo, Courier, monospace;
font-size: 12px;
}
pre {
margin-top: 0;
margin-bottom: 0;
font: 12px Consolas, "Liberation Mono", Menlo, Courier, monospace;
}
.select::-ms-expand {
opacity: 0;
}
.octicon {
font: normal normal normal 16px/1 octicons-link;
display: inline-block;
text-decoration: none;
text-rendering: auto;
-webkit-font-smoothing: antialiased;
-moz-osx-font-smoothing: grayscale;
-webkit-user-select: none;
-moz-user-select: none;
-ms-user-select: none;
user-select: none;
}
.octicon-link:before {
content: '\f05c';
}
.markdown-body:before {
display: table;
content: "";
}
.markdown-body:after {
display: table;
clear: both;
content: "";
}
.markdown-body>*:first-child {
margin-top: 0 !important;
}
.markdown-body>*:last-child {
margin-bottom: 0 !important;
}
a:not([href]) {
color: inherit;
text-decoration: none;
}
.anchor {
display: inline-block;
padding-right: 2px;
margin-left: -18px;
}
.anchor:focus {
outline: none;
}
h1,
h2,
h3,
h4,
h5,
h6 {
margin-top: 1em;
margin-bottom: 16px;
font-weight: bold;
line-height: 1.4;
}
h1 .octicon-link,
h2 .octicon-link,
h3 .octicon-link,
h4 .octicon-link,
h5 .octicon-link,
h6 .octicon-link {
color: #000;
vertical-align: middle;
visibility: hidden;
}
h1:hover .anchor,
h2:hover .anchor,
h3:hover .anchor,
h4:hover .anchor,
h5:hover .anchor,
h6:hover .anchor {
text-decoration: none;
}
h1:hover .anchor .octicon-link,
h2:hover .anchor .octicon-link,
h3:hover .anchor .octicon-link,
h4:hover .anchor .octicon-link,
h5:hover .anchor .octicon-link,
h6:hover .anchor .octicon-link {
visibility: visible;
}
h1 {
padding-bottom: 0.3em;
font-size: 2.25em;
line-height: 1.2;
border-bottom: 1px solid #eee;
}
h1 .anchor {
line-height: 1;
}
h2 {
padding-bottom: 0.3em;
font-size: 1.75em;
line-height: 1.225;
border-bottom: 1px solid #eee;
}
h2 .anchor {
line-height: 1;
}
h3 {
font-size: 1.5em;
line-height: 1.43;
}
h3 .anchor {
line-height: 1.2;
}
h4 {
font-size: 1.25em;
}
h4 .anchor {
line-height: 1.2;
}
h5 {
font-size: 1em;
}
h5 .anchor {
line-height: 1.1;
}
h6 {
font-size: 1em;
color: #777;
}
h6 .anchor {
line-height: 1.1;
}
p,
blockquote,
ul,
ol,
dl,
table,
pre {
margin-top: 0;
margin-bottom: 16px;
}
hr {
height: 4px;
padding: 0;
margin: 16px 0;
background-color: #e7e7e7;
border: 0 none;
}
ul,
ol {
padding-left: 2em;
}
ul ul,
ul ol,
ol ol,
ol ul {
margin-top: 0;
margin-bottom: 0;
}
li>p {
margin-top: 16px;
}
dl {
padding: 0;
}
dl dt {
padding: 0;
margin-top: 16px;
font-size: 1em;
font-style: italic;
font-weight: bold;
}
dl dd {
padding: 0 16px;
margin-bottom: 16px;
}
blockquote {
padding: 0 15px;
color: #777;
border-left: 4px solid #ddd;
}
blockquote>:first-child {
margin-top: 0;
}
blockquote>:last-child {
margin-bottom: 0;
}
table {
display: block;
width: 100%;
overflow: auto;
word-break: normal;
word-break: keep-all;
}
table th {
font-weight: bold;
}
table th,
table td {
padding: 6px 13px;
border: 1px solid #ddd;
}
table tr {
background-color: #fff;
border-top: 1px solid #ccc;
}
table tr:nth-child(2n) {
background-color: #f8f8f8;
}
img {
max-width: 100%;
box-sizing: content-box;
background-color: #fff;
}
code {
padding: 0;
padding-top: 0.2em;
padding-bottom: 0.2em;
margin: 0;
font-size: 85%;
background-color: rgba(0,0,0,0.04);
border-radius: 3px;
}
code:before,
code:after {
letter-spacing: -0.2em;
content: "\00a0";
}
pre>code {
padding: 0;
margin: 0;
font-size: 100%;
word-break: normal;
white-space: pre;
background: transparent;
border: 0;
}
.highlight {
margin-bottom: 16px;
}
.highlight pre,
pre {
padding: 16px;
overflow: auto;
font-size: 85%;
line-height: 1.45;
background-color: #f7f7f7;
border-radius: 3px;
}
.highlight pre {
margin-bottom: 0;
word-break: normal;
}
pre {
word-wrap: normal;
}
pre code {
display: inline;
max-width: initial;
padding: 0;
margin: 0;
overflow: initial;
line-height: inherit;
word-wrap: normal;
background-color: transparent;
border: 0;
}
pre code:before,
pre code:after {
content: normal;
}
kbd {
display: inline-block;
padding: 3px 5px;
font-size: 11px;
line-height: 10px;
color: #555;
vertical-align: middle;
background-color: #fcfcfc;
border: solid 1px #ccc;
border-bottom-color: #bbb;
border-radius: 3px;
box-shadow: inset 0 -1px 0 #bbb;
}
.pl-c {
color: #969896;
}
.pl-c1,
.pl-s .pl-v {
color: #0086b3;
}
.pl-e,
.pl-en {
color: #795da3;
}
.pl-s .pl-s1,
.pl-smi {
color: #333;
}
.pl-ent {
color: #63a35c;
}
.pl-k {
color: #a71d5d;
}
.pl-pds,
.pl-s,
.pl-s .pl-pse .pl-s1,
.pl-sr,
.pl-sr .pl-cce,
.pl-sr .pl-sra,
.pl-sr .pl-sre {
color: #183691;
}
.pl-v {
color: #ed6a43;
}
.pl-id {
color: #b52a1d;
}
.pl-ii {
background-color: #b52a1d;
color: #f8f8f8;
}
.pl-sr .pl-cce {
color: #63a35c;
font-weight: bold;
}
.pl-ml {
color: #693a17;
}
.pl-mh,
.pl-mh .pl-en,
.pl-ms {
color: #1d3e81;
font-weight: bold;
}
.pl-mq {
color: #008080;
}
.pl-mi {
color: #333;
font-style: italic;
}
.pl-mb {
color: #333;
font-weight: bold;
}
.pl-md {
background-color: #ffecec;
color: #bd2c00;
}
.pl-mi1 {
background-color: #eaffea;
color: #55a532;
}
.pl-mdr {
color: #795da3;
font-weight: bold;
}
.pl-mo {
color: #1d3e81;
}
kbd {
display: inline-block;
padding: 3px 5px;
font: 11px Consolas, "Liberation Mono", Menlo, Courier, monospace;
line-height: 10px;
color: #555;
vertical-align: middle;
background-color: #fcfcfc;
border: solid 1px #ccc;
border-bottom-color: #bbb;
border-radius: 3px;
box-shadow: inset 0 -1px 0 #bbb;
}
.task-list-item {
list-style-type: none;
}
.task-list-item+.task-list-item {
margin-top: 3px;
}
.task-list-item input {
margin: 0 0.35em 0.25em -1.6em;
vertical-align: middle;
}
:checked+.radio-label {
z-index: 1;
position: relative;
border-color: #4078c0;
}
.sourceLine {
display: inline-block;
}
code .kw { color: #000000; }
code .dt { color: #ed6a43; }
code .dv { color: #009999; }
code .bn { color: #009999; }
code .fl { color: #009999; }
code .ch { color: #009999; }
code .st { color: #183691; }
code .co { color: #969896; }
code .ot { color: #0086b3; }
code .al { color: #a61717; }
code .fu { color: #63a35c; }
code .er { color: #a61717; background-color: #e3d2d2; }
code .wa { color: #000000; }
code .cn { color: #008080; }
code .sc { color: #008080; }
code .vs { color: #183691; }
code .ss { color: #183691; }
code .im { color: #000000; }
code .va {color: #008080; }
code .cf { color: #000000; }
code .op { color: #000000; }
code .bu { color: #000000; }
code .ex { color: #000000; }
code .pp { color: #999999; }
code .at { color: #008080; }
code .do { color: #969896; }
code .an { color: #008080; }
code .cv { color: #008080; }
code .in { color: #008080; }
</style>
<style>
body {
  box-sizing: border-box;
  min-width: 200px;
  max-width: 980px;
  margin: 0 auto;
  padding: 45px;
  padding-top: 0px;
}
</style>

</head>

<body>

<h1 id="in-depth-1-comparison-of-point-estimates">In-Depth 1: Comparison of Point-Estimates</h1>
<ul>
<li><a href="#effect-point-estimates-in-the-bayesian-framework">Effect Point-Estimates in the Bayesian Framework</a>
<ul>
<li><a href="#introduction">Introduction</a></li>
<li><a href="#experiment-1-relationship-with-error-noise-and-sample-size">Experiment 1: Relationship with Error (Noise) and Sample Size</a>
<ul>
<li><a href="#methods">Methods</a></li>
<li><a href="#results">Results</a></li>
</ul></li>
<li><a href="#experiment-2-relationship-with-sampling-characteristics">Experiment 2: Relationship with Sampling Characteristics</a>
<ul>
<li><a href="#methods-1">Methods</a></li>
<li><a href="#results-1">Results</a></li>
</ul></li>
<li><a href="#experiment-3-relationship-with-priors-specification">Experiment 3: Relationship with Priors Specification</a></li>
<li><a href="#discussion">Discussion</a></li>
</ul></li>
</ul>
<p>This vignette can be referred to by citing the package:</p>
<ul>
<li>Makowski, D., Ben-Shachar, M. S., &amp; Lüdecke, D. (2019). <em>bayestestR: Describing Effects and their Uncertainty, Existence and Significance within the Bayesian Framework</em>. Journal of Open Source Software, 4(40), 1541. <a href="https://doi.org/10.21105/joss.01541">https://doi.org/10.21105/joss.01541</a></li>
</ul>
<hr />
<h1 id="effect-point-estimates-in-the-bayesian-framework">Effect Point-Estimates in the Bayesian Framework</h1>
<h2 id="introduction">Introduction</h2>
<p>One of the main difference between the Bayesian and the frequentist frameworks is that the former returns a probability distribution of each effect (<em>i.e.</em>, parameter of interest of a model, such as a regression slope) instead of a single value. However, there is still a need and demand, for reporting or use in further analysis, for a single value (<strong>point-estimate</strong>) that best characterise the underlying posterior distribution.</p>
<p>There are three main indices used in the literature for effect estimation: the <strong>mean</strong>, the <strong>median</strong> or the <strong>MAP</strong> (Maximum A Posteriori) estimate (roughly corresponding to the mode (the “peak”) of the distribution). Unfortunately, there is no consensus about which one to use, as no systematic comparison has ever been done.</p>
<p>In the present work, we will compare these three point-estimates of effect between themselves, as well as with the widely known <strong>beta</strong>, extracted from a comparable frequentist model. With this comparison, we expect to draw bridges and relationships between the two frameworks, helping and easing the transition for the public.</p>
<h2 id="experiment-1-relationship-with-error-noise-and-sample-size">Experiment 1: Relationship with Error (Noise) and Sample Size</h2>
<h3 id="methods">Methods</h3>
<p>The simulation aimed at modulating the following characteristics:</p>
<ul>
<li><strong>Model type</strong>: linear or logistic.</li>
<li><strong>“True” effect</strong> (original regression coefficient from which data is drawn): Can be 1 or 0 (no effect).</li>
<li><strong>Sample size</strong>: From 20 to 100 by steps of 10.</li>
<li><strong>Error</strong>: Gaussian noise applied to the predictor with SD uniformly spread between 0.33 and 6.66 (with 1000 different values).</li>
</ul>
<p>We generated a dataset for each combination of these characteristics, resulting in a total of <code>2 * 2 * 9 * 1000 = 36000</code> Bayesian and frequentist models. The code used for generation is avaible <a href="https://easystats.github.io/circus/articles/bayesian_indices.html">here</a> (please note that it takes usually several days/weeks to complete).</p>
<div class="sourceCode" id="cb1"><pre class="sourceCode r"><code class="sourceCode r"><a class="sourceLine" id="cb1-1" title="1"><span class="kw">library</span>(ggplot2)</a>
<a class="sourceLine" id="cb1-2" title="2"><span class="kw">library</span>(dplyr)</a>
<a class="sourceLine" id="cb1-3" title="3"><span class="kw">library</span>(tidyr)</a>
<a class="sourceLine" id="cb1-4" title="4"><span class="kw">library</span>(see)</a>
<a class="sourceLine" id="cb1-5" title="5"></a>
<a class="sourceLine" id="cb1-6" title="6">df &lt;-<span class="st"> </span><span class="kw">read.csv</span>(<span class="st">&quot;https://raw.github.com/easystats/circus/master/data/bayesSim_study1.csv&quot;</span>)</a></code></pre></div>
<h3 id="results">Results</h3>
<h4 id="sensitivity-to-noise">Sensitivity to Noise</h4>
<div class="sourceCode" id="cb2"><pre class="sourceCode r"><code class="sourceCode r"><a class="sourceLine" id="cb2-1" title="1">df <span class="op">%&gt;%</span></a>
<a class="sourceLine" id="cb2-2" title="2"><span class="st">  </span><span class="kw">select</span>(error, true_effect, outcome_type, Coefficient, Median, Mean, MAP) <span class="op">%&gt;%</span></a>
<a class="sourceLine" id="cb2-3" title="3"><span class="st">  </span><span class="kw">gather</span>(estimate, value, <span class="op">-</span>error, <span class="op">-</span>true_effect, <span class="op">-</span>outcome_type) <span class="op">%&gt;%</span></a>
<a class="sourceLine" id="cb2-4" title="4"><span class="st">  </span><span class="kw">mutate</span>(<span class="dt">temp =</span> <span class="kw">as.factor</span>(<span class="kw">cut</span>(error, <span class="dv">10</span>, <span class="dt">labels =</span> <span class="ot">FALSE</span>))) <span class="op">%&gt;%</span><span class="st"> </span></a>
<a class="sourceLine" id="cb2-5" title="5"><span class="st">  </span><span class="kw">group_by</span>(temp) <span class="op">%&gt;%</span><span class="st"> </span></a>
<a class="sourceLine" id="cb2-6" title="6"><span class="st">  </span><span class="kw">mutate</span>(<span class="dt">error_group =</span> <span class="kw">round</span>(<span class="kw">mean</span>(error), <span class="dv">1</span>)) <span class="op">%&gt;%</span><span class="st"> </span></a>
<a class="sourceLine" id="cb2-7" title="7"><span class="st">  </span><span class="kw">ungroup</span>() <span class="op">%&gt;%</span><span class="st"> </span></a>
<a class="sourceLine" id="cb2-8" title="8"><span class="st">  </span><span class="kw">filter</span>(value <span class="op">&lt;</span><span class="st"> </span><span class="dv">6</span>) <span class="op">%&gt;%</span><span class="st"> </span></a>
<a class="sourceLine" id="cb2-9" title="9"><span class="st">  </span><span class="kw">ggplot</span>(<span class="kw">aes</span>(<span class="dt">x =</span> error_group, <span class="dt">y =</span> value, <span class="dt">fill =</span> estimate, <span class="dt">group =</span> <span class="kw">interaction</span>(estimate, error_group))) <span class="op">+</span></a>
<a class="sourceLine" id="cb2-10" title="10"><span class="st">  </span><span class="co"># geom_hline(yintercept = 0) +</span></a>
<a class="sourceLine" id="cb2-11" title="11"><span class="st">  </span><span class="co"># geom_point(alpha=0.05, size=2, stroke = 0, shape=16) +</span></a>
<a class="sourceLine" id="cb2-12" title="12"><span class="st">  </span><span class="co"># geom_smooth(method=&quot;loess&quot;) +</span></a>
<a class="sourceLine" id="cb2-13" title="13"><span class="st">  </span><span class="kw">geom_boxplot</span>(<span class="dt">outlier.shape=</span><span class="ot">NA</span>) <span class="op">+</span></a>
<a class="sourceLine" id="cb2-14" title="14"><span class="st">  </span><span class="kw">theme_modern</span>() <span class="op">+</span></a>
<a class="sourceLine" id="cb2-15" title="15"><span class="st">  </span><span class="kw">scale_fill_manual</span>(<span class="dt">values =</span> <span class="kw">c</span>(<span class="st">&quot;Coefficient&quot;</span> =<span class="st"> &quot;#607D8B&quot;</span>, <span class="st">&quot;MAP&quot;</span> =<span class="st"> &quot;#795548&quot;</span>, <span class="st">&quot;Mean&quot;</span> =<span class="st"> &quot;#FF9800&quot;</span>, <span class="st">&quot;Median&quot;</span> =<span class="st"> &quot;#FFEB3B&quot;</span>),</a>
<a class="sourceLine" id="cb2-16" title="16">                    <span class="dt">name =</span> <span class="st">&quot;Index&quot;</span>) <span class="op">+</span></a>
<a class="sourceLine" id="cb2-17" title="17"><span class="st">  </span><span class="kw">ylab</span>(<span class="st">&quot;Point-estimate&quot;</span>) <span class="op">+</span></a>
<a class="sourceLine" id="cb2-18" title="18"><span class="st">  </span><span class="kw">xlab</span>(<span class="st">&quot;Noise&quot;</span>) <span class="op">+</span></a>
<a class="sourceLine" id="cb2-19" title="19"><span class="st">  </span><span class="kw">facet_wrap</span>(<span class="op">~</span><span class="st"> </span>outcome_type <span class="op">*</span><span class="st"> </span>true_effect, <span class="dt">scales=</span><span class="st">&quot;free&quot;</span>) </a></code></pre></div>
<p><img src="" /><!-- --></p>
<h4 id="sensitivity-to-sample-size">Sensitivity to Sample Size</h4>
<div class="sourceCode" id="cb3"><pre class="sourceCode r"><code class="sourceCode r"><a class="sourceLine" id="cb3-1" title="1">df <span class="op">%&gt;%</span></a>
<a class="sourceLine" id="cb3-2" title="2"><span class="st">  </span><span class="kw">select</span>(sample_size, true_effect, outcome_type, Coefficient, Median, Mean, MAP) <span class="op">%&gt;%</span></a>
<a class="sourceLine" id="cb3-3" title="3"><span class="st">  </span><span class="kw">gather</span>(estimate, value, <span class="op">-</span>sample_size, <span class="op">-</span>true_effect, <span class="op">-</span>outcome_type) <span class="op">%&gt;%</span></a>
<a class="sourceLine" id="cb3-4" title="4"><span class="st">  </span><span class="kw">mutate</span>(<span class="dt">temp =</span> <span class="kw">as.factor</span>(<span class="kw">cut</span>(sample_size, <span class="dv">10</span>, <span class="dt">labels =</span> <span class="ot">FALSE</span>))) <span class="op">%&gt;%</span><span class="st"> </span></a>
<a class="sourceLine" id="cb3-5" title="5"><span class="st">  </span><span class="kw">group_by</span>(temp) <span class="op">%&gt;%</span><span class="st"> </span></a>
<a class="sourceLine" id="cb3-6" title="6"><span class="st">  </span><span class="kw">mutate</span>(<span class="dt">size_group =</span> <span class="kw">round</span>(<span class="kw">mean</span>(sample_size))) <span class="op">%&gt;%</span><span class="st"> </span></a>
<a class="sourceLine" id="cb3-7" title="7"><span class="st">  </span><span class="kw">ungroup</span>() <span class="op">%&gt;%</span><span class="st"> </span></a>
<a class="sourceLine" id="cb3-8" title="8"><span class="st">  </span><span class="kw">filter</span>(value <span class="op">&lt;</span><span class="st"> </span><span class="dv">6</span>) <span class="op">%&gt;%</span><span class="st"> </span></a>
<a class="sourceLine" id="cb3-9" title="9"><span class="st">  </span><span class="kw">ggplot</span>(<span class="kw">aes</span>(<span class="dt">x =</span> size_group, <span class="dt">y =</span> value, <span class="dt">fill =</span> estimate, <span class="dt">group =</span> <span class="kw">interaction</span>(estimate, size_group))) <span class="op">+</span></a>
<a class="sourceLine" id="cb3-10" title="10"><span class="st">  </span><span class="co"># geom_hline(yintercept = 0) +</span></a>
<a class="sourceLine" id="cb3-11" title="11"><span class="st">  </span><span class="co"># geom_point(alpha=0.05, size=2, stroke = 0, shape=16) +</span></a>
<a class="sourceLine" id="cb3-12" title="12"><span class="st">  </span><span class="co"># geom_smooth(method=&quot;loess&quot;) +</span></a>
<a class="sourceLine" id="cb3-13" title="13"><span class="st">  </span><span class="kw">geom_boxplot</span>(<span class="dt">outlier.shape=</span><span class="ot">NA</span>) <span class="op">+</span></a>
<a class="sourceLine" id="cb3-14" title="14"><span class="st">  </span><span class="kw">theme_modern</span>() <span class="op">+</span></a>
<a class="sourceLine" id="cb3-15" title="15"><span class="st">  </span><span class="kw">scale_fill_manual</span>(<span class="dt">values =</span> <span class="kw">c</span>(<span class="st">&quot;Coefficient&quot;</span> =<span class="st"> &quot;#607D8B&quot;</span>, <span class="st">&quot;MAP&quot;</span> =<span class="st"> &quot;#795548&quot;</span>, <span class="st">&quot;Mean&quot;</span> =<span class="st"> &quot;#FF9800&quot;</span>, <span class="st">&quot;Median&quot;</span> =<span class="st"> &quot;#FFEB3B&quot;</span>),</a>
<a class="sourceLine" id="cb3-16" title="16">                    <span class="dt">name =</span> <span class="st">&quot;Index&quot;</span>) <span class="op">+</span></a>
<a class="sourceLine" id="cb3-17" title="17"><span class="st">  </span><span class="kw">ylab</span>(<span class="st">&quot;Point-estimate&quot;</span>) <span class="op">+</span></a>
<a class="sourceLine" id="cb3-18" title="18"><span class="st">  </span><span class="kw">xlab</span>(<span class="st">&quot;Sample size&quot;</span>) <span class="op">+</span></a>
<a class="sourceLine" id="cb3-19" title="19"><span class="st">  </span><span class="kw">facet_wrap</span>(<span class="op">~</span><span class="st"> </span>outcome_type <span class="op">*</span><span class="st"> </span>true_effect, <span class="dt">scales=</span><span class="st">&quot;free&quot;</span>)</a></code></pre></div>
<p><img src="" /><!-- --></p>
<h4 id="statistical-modelling">Statistical Modelling</h4>
<p>We fitted a (frequentist) multiple linear regression to statistically test the the predict the presence or absence of effect with the estimates as well as their interaction with noise and sample size.</p>
<div class="sourceCode" id="cb4"><pre class="sourceCode r"><code class="sourceCode r"><a class="sourceLine" id="cb4-1" title="1">df <span class="op">%&gt;%</span></a>
<a class="sourceLine" id="cb4-2" title="2"><span class="st">  </span><span class="kw">select</span>(sample_size, error, true_effect, outcome_type, Coefficient, Median, Mean, MAP) <span class="op">%&gt;%</span></a>
<a class="sourceLine" id="cb4-3" title="3"><span class="st">  </span><span class="kw">gather</span>(estimate, value, <span class="op">-</span>sample_size, <span class="op">-</span>error, <span class="op">-</span>true_effect, <span class="op">-</span>outcome_type) <span class="op">%&gt;%</span></a>
<a class="sourceLine" id="cb4-4" title="4"><span class="st">  </span><span class="kw">glm</span>(true_effect <span class="op">~</span><span class="st"> </span>outcome_type <span class="op">/</span><span class="st"> </span>estimate <span class="op">/</span><span class="st"> </span>value, <span class="dt">data=</span>., <span class="dt">family=</span><span class="st">&quot;binomial&quot;</span>) <span class="op">%&gt;%</span></a>
<a class="sourceLine" id="cb4-5" title="5"><span class="st">  </span>broom<span class="op">::</span><span class="kw">tidy</span>() <span class="op">%&gt;%</span></a>
<a class="sourceLine" id="cb4-6" title="6"><span class="st">  </span><span class="kw">select</span>(term, estimate, <span class="dt">p=</span>p.value) <span class="op">%&gt;%</span></a>
<a class="sourceLine" id="cb4-7" title="7"><span class="st">  </span><span class="kw">filter</span>(stringr<span class="op">::</span><span class="kw">str_detect</span>(term, <span class="st">&#39;outcome_type&#39;</span>),</a>
<a class="sourceLine" id="cb4-8" title="8">         stringr<span class="op">::</span><span class="kw">str_detect</span>(term, <span class="st">&#39;:value&#39;</span>)) <span class="op">%&gt;%</span></a>
<a class="sourceLine" id="cb4-9" title="9"><span class="st">  </span><span class="kw">arrange</span>(<span class="kw">desc</span>(estimate)) <span class="op">%&gt;%</span><span class="st"> </span></a>
<a class="sourceLine" id="cb4-10" title="10"><span class="st">  </span>knitr<span class="op">::</span><span class="kw">kable</span>(<span class="dt">digits=</span><span class="dv">2</span>) </a></code></pre></div>
<table>
<thead>
<tr class="header">
<th align="left">term</th>
<th align="right">estimate</th>
<th align="right">p</th>
</tr>
</thead>
<tbody>
<tr class="odd">
<td align="left">outcome_typelinear:estimateMean:value</td>
<td align="right">10.8</td>
<td align="right">0</td>
</tr>
<tr class="even">
<td align="left">outcome_typelinear:estimateMedian:value</td>
<td align="right">10.8</td>
<td align="right">0</td>
</tr>
<tr class="odd">
<td align="left">outcome_typelinear:estimateMAP:value</td>
<td align="right">10.7</td>
<td align="right">0</td>
</tr>
<tr class="even">
<td align="left">outcome_typelinear:estimateCoefficient:value</td>
<td align="right">10.5</td>
<td align="right">0</td>
</tr>
<tr class="odd">
<td align="left">outcome_typebinary:estimateMAP:value</td>
<td align="right">4.4</td>
<td align="right">0</td>
</tr>
<tr class="even">
<td align="left">outcome_typebinary:estimateMedian:value</td>
<td align="right">4.3</td>
<td align="right">0</td>
</tr>
<tr class="odd">
<td align="left">outcome_typebinary:estimateMean:value</td>
<td align="right">4.2</td>
<td align="right">0</td>
</tr>
<tr class="even">
<td align="left">outcome_typebinary:estimateCoefficient:value</td>
<td align="right">3.9</td>
<td align="right">0</td>
</tr>
</tbody>
</table>
<p>This suggests that, in order to delineate between the presence and the absence of an effect, compared to the frequentist’s beta:</p>
<ul>
<li>For linear models, the <strong>Mean</strong> was the better predictor, closely followed by the <strong>Median</strong>, the <strong>MAP</strong> and the frequentist <strong>Coefficient</strong>.</li>
<li>For logistic models, the <strong>MAP</strong> was the better predictor, followed by the <strong>Median</strong>, the <strong>Mean</strong> and, behind, the frequentist <strong>Coefficient</strong>.</li>
</ul>
<p>Overall, the <strong>median</strong> seems to be appears as a safe and approriate choice, maintaining a a high performance accross different types of models.</p>
<!-- ```{r, message=FALSE, warning=FALSE} -->

<!-- df %>% -->

<!--   select(sample_size, error, true_effect, outcome_type, beta, Median, Mean, MAP) %>% -->

<!--   gather(estimate, value, -sample_size, -error, -true_effect, -outcome_type) %>% -->

<!--   glm(true_effect ~ outcome_type / value * estimate * sample_size * error, data=., family="binomial") %>% -->

<!--   broom::tidy() %>% -->

<!--   select(term, estimate, p=p.value) %>% -->

<!--   filter(stringr::str_detect(term, 'outcome_type'), -->

<!--          stringr::str_detect(term, ':value')) %>% -->

<!--   mutate( -->

<!--     sample_size = stringr::str_detect(term, 'sample_size'), -->

<!--     error = stringr::str_detect(term, 'error'), -->

<!--     term = stringr::str_remove(term, "estimate"), -->

<!--     term = stringr::str_remove(term, "outcome_type"), -->

<!--     p = paste0(sprintf("%.2f", p), ifelse(p < .001, "***", ifelse(p < .01, "**", ifelse(p < .05, "*", ""))))) %>% -->

<!--   arrange(sample_size, error, term) %>%  -->

<!--   select(-sample_size, -error) %>%  -->

<!--   knitr::kable(digits=2)  -->

<!-- ``` -->

<!-- This suggests that, in order to delineate between the presence and the absence of an effect, compared to the frequentist's beta: -->

<!-- - For linear Models; -->

<!--   - The **mean**, followed closely by the **median**, and the **MAP** estimate had a superior performance, altough not significantly. -->

<!--   - The **mean**, followed closely by the **median**, and the **MAP** estimate, were less affected by noise, altough not significantly. -->

<!--   - No difference for the sensitivity to sample size was found. -->

<!-- - For logistic models: -->

<!--   - The **MAP** estimate, followed by the **median** and the **mean**, estimate had a superior performance. -->

<!--   - The **MAP** estimate, followed by the **median**, and the **mean**, were less affected by noise, altough not significantly. -->

<!--   - The **MAP** estimate, followed by the **mean**, and the **median**, were less affected by sample size, altough not significantly. -->

<h2 id="experiment-2-relationship-with-sampling-characteristics">Experiment 2: Relationship with Sampling Characteristics</h2>
<h3 id="methods-1">Methods</h3>
<p>The simulation aimed at modulating the following characteristics:</p>
<ul>
<li><strong>Model type</strong>: linear or logistic.</li>
<li><strong>“True” effect</strong> (original regression coefficient from which data is drawn): Can be 1 or 0 (no effect).</li>
<li><strong>draws</strong>: from 10 to 5000 by step of 5 (1000 iterations).</li>
<li><strong>warmup</strong>: Ratio of warmup iterations. from 1/10 to 9/10 by step of 0.1 (9 iterations).</li>
</ul>
<p>We generated 3 datasets for each combination of these characteristics, resulting in a total of <code>2 * 2 * 8 * 40 * 9 * 3 = 34560</code> Bayesian and frequentist models. The code used for generation is avaible <a href="https://easystats.github.io/circus/articles/bayesian_indices.html">here</a> (please note that it takes usually several days/weeks to complete).</p>
<div class="sourceCode" id="cb5"><pre class="sourceCode r"><code class="sourceCode r"><a class="sourceLine" id="cb5-1" title="1">df &lt;-<span class="st"> </span><span class="kw">read.csv</span>(<span class="st">&quot;https://raw.github.com/easystats/circus/master/data/bayesSim_study2.csv&quot;</span>)</a></code></pre></div>
<h3 id="results-1">Results</h3>
<h4 id="sensitivity-to-number-of-iterations">Sensitivity to number of iterations</h4>
<div class="sourceCode" id="cb6"><pre class="sourceCode r"><code class="sourceCode r"><a class="sourceLine" id="cb6-1" title="1">df <span class="op">%&gt;%</span></a>
<a class="sourceLine" id="cb6-2" title="2"><span class="st">  </span><span class="kw">select</span>(iterations, true_effect, outcome_type, beta, Median, Mean, MAP) <span class="op">%&gt;%</span></a>
<a class="sourceLine" id="cb6-3" title="3"><span class="st">  </span><span class="kw">gather</span>(estimate, value, <span class="op">-</span>iterations, <span class="op">-</span>true_effect, <span class="op">-</span>outcome_type) <span class="op">%&gt;%</span></a>
<a class="sourceLine" id="cb6-4" title="4"><span class="st">  </span><span class="kw">mutate</span>(<span class="dt">temp =</span> <span class="kw">as.factor</span>(<span class="kw">cut</span>(iterations, <span class="dv">5</span>, <span class="dt">labels =</span> <span class="ot">FALSE</span>))) <span class="op">%&gt;%</span><span class="st"> </span></a>
<a class="sourceLine" id="cb6-5" title="5"><span class="st">  </span><span class="kw">group_by</span>(temp) <span class="op">%&gt;%</span><span class="st"> </span></a>
<a class="sourceLine" id="cb6-6" title="6"><span class="st">  </span><span class="kw">mutate</span>(<span class="dt">iterations_group =</span> <span class="kw">round</span>(<span class="kw">mean</span>(iterations), <span class="dv">1</span>)) <span class="op">%&gt;%</span><span class="st"> </span></a>
<a class="sourceLine" id="cb6-7" title="7"><span class="st">  </span><span class="kw">ungroup</span>() <span class="op">%&gt;%</span><span class="st"> </span></a>
<a class="sourceLine" id="cb6-8" title="8"><span class="st">  </span><span class="kw">filter</span>(value <span class="op">&lt;</span><span class="st"> </span><span class="dv">6</span>) <span class="op">%&gt;%</span></a>
<a class="sourceLine" id="cb6-9" title="9"><span class="st">  </span><span class="kw">ggplot</span>(<span class="kw">aes</span>(<span class="dt">x =</span> iterations_group, <span class="dt">y =</span> value, <span class="dt">fill =</span> estimate, <span class="dt">group =</span> <span class="kw">interaction</span>(estimate, iterations_group))) <span class="op">+</span></a>
<a class="sourceLine" id="cb6-10" title="10"><span class="st">  </span><span class="kw">geom_boxplot</span>(<span class="dt">outlier.shape=</span><span class="ot">NA</span>) <span class="op">+</span></a>
<a class="sourceLine" id="cb6-11" title="11"><span class="st">  </span><span class="kw">theme_classic</span>() <span class="op">+</span></a>
<a class="sourceLine" id="cb6-12" title="12"><span class="st">  </span><span class="kw">scale_fill_manual</span>(<span class="dt">values =</span> <span class="kw">c</span>(<span class="st">&quot;beta&quot;</span> =<span class="st"> &quot;#607D8B&quot;</span>, <span class="st">&quot;MAP&quot;</span> =<span class="st"> &quot;#795548&quot;</span>, <span class="st">&quot;Mean&quot;</span> =<span class="st"> &quot;#FF9800&quot;</span>, <span class="st">&quot;Median&quot;</span> =<span class="st"> &quot;#FFEB3B&quot;</span>),</a>
<a class="sourceLine" id="cb6-13" title="13">                    <span class="dt">name =</span> <span class="st">&quot;Index&quot;</span>) <span class="op">+</span></a>
<a class="sourceLine" id="cb6-14" title="14"><span class="st">  </span><span class="kw">ylab</span>(<span class="st">&quot;Point-estimate of the true value 0</span><span class="ch">\n</span><span class="st">&quot;</span>) <span class="op">+</span></a>
<a class="sourceLine" id="cb6-15" title="15"><span class="st">  </span><span class="kw">xlab</span>(<span class="st">&quot;</span><span class="ch">\n</span><span class="st">Number of Iterations&quot;</span>) <span class="op">+</span></a>
<a class="sourceLine" id="cb6-16" title="16"><span class="st">  </span><span class="kw">facet_wrap</span>(<span class="op">~</span><span class="st"> </span>outcome_type <span class="op">*</span><span class="st"> </span>true_effect, <span class="dt">scales=</span><span class="st">&quot;free&quot;</span>) </a></code></pre></div>
<p><img src="" /><!-- --></p>
<h4 id="sensitivity-to-warmup-ratio">Sensitivity to warmup ratio</h4>
<div class="sourceCode" id="cb7"><pre class="sourceCode r"><code class="sourceCode r"><a class="sourceLine" id="cb7-1" title="1">df <span class="op">%&gt;%</span></a>
<a class="sourceLine" id="cb7-2" title="2"><span class="st">  </span><span class="kw">mutate</span>(<span class="dt">warmup =</span> warmup <span class="op">/</span><span class="st"> </span>iterations) <span class="op">%&gt;%</span><span class="st"> </span></a>
<a class="sourceLine" id="cb7-3" title="3"><span class="st">  </span><span class="kw">select</span>(warmup, true_effect, outcome_type, beta, Median, Mean, MAP) <span class="op">%&gt;%</span></a>
<a class="sourceLine" id="cb7-4" title="4"><span class="st">  </span><span class="kw">gather</span>(estimate, value, <span class="op">-</span>warmup, <span class="op">-</span>true_effect, <span class="op">-</span>outcome_type) <span class="op">%&gt;%</span></a>
<a class="sourceLine" id="cb7-5" title="5"><span class="st">  </span><span class="kw">mutate</span>(<span class="dt">temp =</span> <span class="kw">as.factor</span>(<span class="kw">cut</span>(warmup, <span class="dv">3</span>, <span class="dt">labels =</span> <span class="ot">FALSE</span>))) <span class="op">%&gt;%</span><span class="st"> </span></a>
<a class="sourceLine" id="cb7-6" title="6"><span class="st">  </span><span class="kw">group_by</span>(temp) <span class="op">%&gt;%</span><span class="st"> </span></a>
<a class="sourceLine" id="cb7-7" title="7"><span class="st">  </span><span class="kw">mutate</span>(<span class="dt">warmup_group =</span> <span class="kw">round</span>(<span class="kw">mean</span>(warmup), <span class="dv">1</span>)) <span class="op">%&gt;%</span><span class="st"> </span></a>
<a class="sourceLine" id="cb7-8" title="8"><span class="st">  </span><span class="kw">ungroup</span>() <span class="op">%&gt;%</span><span class="st"> </span></a>
<a class="sourceLine" id="cb7-9" title="9"><span class="st">  </span><span class="kw">filter</span>(value <span class="op">&lt;</span><span class="st"> </span><span class="dv">6</span>) <span class="op">%&gt;%</span><span class="st"> </span></a>
<a class="sourceLine" id="cb7-10" title="10"><span class="st">  </span><span class="kw">ggplot</span>(<span class="kw">aes</span>(<span class="dt">x =</span> warmup_group, <span class="dt">y =</span> value, <span class="dt">fill =</span> estimate, <span class="dt">group =</span> <span class="kw">interaction</span>(estimate, warmup_group))) <span class="op">+</span></a>
<a class="sourceLine" id="cb7-11" title="11"><span class="st">  </span><span class="kw">geom_boxplot</span>(<span class="dt">outlier.shape=</span><span class="ot">NA</span>) <span class="op">+</span></a>
<a class="sourceLine" id="cb7-12" title="12"><span class="st">  </span><span class="kw">theme_classic</span>() <span class="op">+</span></a>
<a class="sourceLine" id="cb7-13" title="13"><span class="st">  </span><span class="kw">scale_fill_manual</span>(<span class="dt">values =</span> <span class="kw">c</span>(<span class="st">&quot;beta&quot;</span> =<span class="st"> &quot;#607D8B&quot;</span>, <span class="st">&quot;MAP&quot;</span> =<span class="st"> &quot;#795548&quot;</span>, <span class="st">&quot;Mean&quot;</span> =<span class="st"> &quot;#FF9800&quot;</span>, <span class="st">&quot;Median&quot;</span> =<span class="st"> &quot;#FFEB3B&quot;</span>),</a>
<a class="sourceLine" id="cb7-14" title="14">                    <span class="dt">name =</span> <span class="st">&quot;Index&quot;</span>) <span class="op">+</span></a>
<a class="sourceLine" id="cb7-15" title="15"><span class="st">  </span><span class="kw">ylab</span>(<span class="st">&quot;Point-estimate of the true value 0</span><span class="ch">\n</span><span class="st">&quot;</span>) <span class="op">+</span></a>
<a class="sourceLine" id="cb7-16" title="16"><span class="st">  </span><span class="kw">xlab</span>(<span class="st">&quot;</span><span class="ch">\n</span><span class="st">Number of Iterations&quot;</span>) <span class="op">+</span></a>
<a class="sourceLine" id="cb7-17" title="17"><span class="st">  </span><span class="kw">facet_wrap</span>(<span class="op">~</span><span class="st"> </span>outcome_type <span class="op">*</span><span class="st"> </span>true_effect, <span class="dt">scales=</span><span class="st">&quot;free&quot;</span>) </a></code></pre></div>
<p><img src="" /><!-- --></p>
<h2 id="experiment-3-relationship-with-priors-specification">Experiment 3: Relationship with Priors Specification</h2>
<h2 id="discussion">Discussion</h2>
<p>Conclusions can be found in the <a href="https://easystats.github.io/bayestestR/articles/guidelines.html">guidelines section</a>.</p>

</body>
</html>
back to top