Revision 44e1e9f8e70506728b02a18e6d03599a6485d67f authored by Shuah Khan on 29 May 2012, 22:07:30 UTC, committed by Linus Torvalds on 29 May 2012, 23:22:32 UTC
The leds timer trigger does not currently have an interface to activate a
one shot timer.  The current support allows for setting two timers, one
for specifying how long a state to be on, and the second for how long the
state to be off.  The delay_on value specifies the time period an LED
should stay in on state, followed by a delay_off value that specifies how
long the LED should stay in off state.  The on and off cycle repeats until
the trigger gets deactivated.  There is no provision for one time
activation to implement features that require an on or off state to be
held just once and then stay in the original state forever.

Without one shot timer interface, user space can still use timer trigger
to set a timer to hold a state, however when user space application
crashes or goes away without deactivating the timer, the hardware will be
left in that state permanently.

As a specific example of this use-case, let's look at vibrate feature on
phones.  Vibrate function on phones is implemented using PWM pins on SoC
or PMIC.  There is a need to activate one shot timer to control the
vibrate feature, to prevent user space crashes leaving the phone in
vibrate mode permanently causing the battery to drain.

This trigger exports three properties, activate, state, and duration When
transient trigger is activated these properties are set to default values.

- duration allows setting timer value in msecs. The initial value is 0.
- activate allows activating and deactivating the timer specified by
  duration as needed. The initial and default value is 0.  This will allow
  duration to be set after trigger activation.
- state allows user to specify a transient state to be held for the specified
  duration.

Signed-off-by: Shuah Khan <shuahkhan@gmail.com>
Cc: Jonas Bonn <jonas@southpole.se>
Cc: Richard Purdie <rpurdie@rpsys.net>
Cc: NeilBrown <neilb@suse.de>
Cc: Bryan Wu <bryan.wu@canonical.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
1 parent 49dca5a
Raw File
delayacct.c
/* delayacct.c - per-task delay accounting
 *
 * Copyright (C) Shailabh Nagar, IBM Corp. 2006
 *
 * This program is free software;  you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it would be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
 * the GNU General Public License for more details.
 */

#include <linux/sched.h>
#include <linux/slab.h>
#include <linux/taskstats.h>
#include <linux/time.h>
#include <linux/sysctl.h>
#include <linux/delayacct.h>
#include <linux/module.h>

int delayacct_on __read_mostly = 1;	/* Delay accounting turned on/off */
EXPORT_SYMBOL_GPL(delayacct_on);
struct kmem_cache *delayacct_cache;

static int __init delayacct_setup_disable(char *str)
{
	delayacct_on = 0;
	return 1;
}
__setup("nodelayacct", delayacct_setup_disable);

void delayacct_init(void)
{
	delayacct_cache = KMEM_CACHE(task_delay_info, SLAB_PANIC);
	delayacct_tsk_init(&init_task);
}

void __delayacct_tsk_init(struct task_struct *tsk)
{
	tsk->delays = kmem_cache_zalloc(delayacct_cache, GFP_KERNEL);
	if (tsk->delays)
		spin_lock_init(&tsk->delays->lock);
}

/*
 * Start accounting for a delay statistic using
 * its starting timestamp (@start)
 */

static inline void delayacct_start(struct timespec *start)
{
	do_posix_clock_monotonic_gettime(start);
}

/*
 * Finish delay accounting for a statistic using
 * its timestamps (@start, @end), accumalator (@total) and @count
 */

static void delayacct_end(struct timespec *start, struct timespec *end,
				u64 *total, u32 *count)
{
	struct timespec ts;
	s64 ns;
	unsigned long flags;

	do_posix_clock_monotonic_gettime(end);
	ts = timespec_sub(*end, *start);
	ns = timespec_to_ns(&ts);
	if (ns < 0)
		return;

	spin_lock_irqsave(&current->delays->lock, flags);
	*total += ns;
	(*count)++;
	spin_unlock_irqrestore(&current->delays->lock, flags);
}

void __delayacct_blkio_start(void)
{
	delayacct_start(&current->delays->blkio_start);
}

void __delayacct_blkio_end(void)
{
	if (current->delays->flags & DELAYACCT_PF_SWAPIN)
		/* Swapin block I/O */
		delayacct_end(&current->delays->blkio_start,
			&current->delays->blkio_end,
			&current->delays->swapin_delay,
			&current->delays->swapin_count);
	else	/* Other block I/O */
		delayacct_end(&current->delays->blkio_start,
			&current->delays->blkio_end,
			&current->delays->blkio_delay,
			&current->delays->blkio_count);
}

int __delayacct_add_tsk(struct taskstats *d, struct task_struct *tsk)
{
	s64 tmp;
	unsigned long t1;
	unsigned long long t2, t3;
	unsigned long flags;
	struct timespec ts;

	/* Though tsk->delays accessed later, early exit avoids
	 * unnecessary returning of other data
	 */
	if (!tsk->delays)
		goto done;

	tmp = (s64)d->cpu_run_real_total;
	cputime_to_timespec(tsk->utime + tsk->stime, &ts);
	tmp += timespec_to_ns(&ts);
	d->cpu_run_real_total = (tmp < (s64)d->cpu_run_real_total) ? 0 : tmp;

	tmp = (s64)d->cpu_scaled_run_real_total;
	cputime_to_timespec(tsk->utimescaled + tsk->stimescaled, &ts);
	tmp += timespec_to_ns(&ts);
	d->cpu_scaled_run_real_total =
		(tmp < (s64)d->cpu_scaled_run_real_total) ? 0 : tmp;

	/*
	 * No locking available for sched_info (and too expensive to add one)
	 * Mitigate by taking snapshot of values
	 */
	t1 = tsk->sched_info.pcount;
	t2 = tsk->sched_info.run_delay;
	t3 = tsk->se.sum_exec_runtime;

	d->cpu_count += t1;

	tmp = (s64)d->cpu_delay_total + t2;
	d->cpu_delay_total = (tmp < (s64)d->cpu_delay_total) ? 0 : tmp;

	tmp = (s64)d->cpu_run_virtual_total + t3;
	d->cpu_run_virtual_total =
		(tmp < (s64)d->cpu_run_virtual_total) ?	0 : tmp;

	/* zero XXX_total, non-zero XXX_count implies XXX stat overflowed */

	spin_lock_irqsave(&tsk->delays->lock, flags);
	tmp = d->blkio_delay_total + tsk->delays->blkio_delay;
	d->blkio_delay_total = (tmp < d->blkio_delay_total) ? 0 : tmp;
	tmp = d->swapin_delay_total + tsk->delays->swapin_delay;
	d->swapin_delay_total = (tmp < d->swapin_delay_total) ? 0 : tmp;
	tmp = d->freepages_delay_total + tsk->delays->freepages_delay;
	d->freepages_delay_total = (tmp < d->freepages_delay_total) ? 0 : tmp;
	d->blkio_count += tsk->delays->blkio_count;
	d->swapin_count += tsk->delays->swapin_count;
	d->freepages_count += tsk->delays->freepages_count;
	spin_unlock_irqrestore(&tsk->delays->lock, flags);

done:
	return 0;
}

__u64 __delayacct_blkio_ticks(struct task_struct *tsk)
{
	__u64 ret;
	unsigned long flags;

	spin_lock_irqsave(&tsk->delays->lock, flags);
	ret = nsec_to_clock_t(tsk->delays->blkio_delay +
				tsk->delays->swapin_delay);
	spin_unlock_irqrestore(&tsk->delays->lock, flags);
	return ret;
}

void __delayacct_freepages_start(void)
{
	delayacct_start(&current->delays->freepages_start);
}

void __delayacct_freepages_end(void)
{
	delayacct_end(&current->delays->freepages_start,
			&current->delays->freepages_end,
			&current->delays->freepages_delay,
			&current->delays->freepages_count);
}

back to top