Skip to main content
  • Home
  • Development
  • Documentation
  • Donate
  • Operational login
  • Browse the archive

swh logo
SoftwareHeritage
Software
Heritage
Archive
Features
  • Search

  • Downloads

  • Save code now

  • Add forge now

  • Help

Revision 45f6a33c0276fb344367de006252ba59881fe62b authored by Nicolas F. Chaves-de-Plaza on 11 December 2023, 10:25:31 UTC, committed by Nicolas F. Chaves-de-Plaza on 11 December 2023, 10:25:31 UTC
Updated documentation
1 parent c552d7b
  • Files
  • Changes
  • f3436ac
  • /
  • experiments_and_plots
  • /
  • table_average_iteration_vs_data_set_size_per_exact_or_accelerated_tsne.py
Raw File Download

To reference or cite the objects present in the Software Heritage archive, permalinks based on SoftWare Hash IDentifiers (SWHIDs) must be used.
Select below a type of object currently browsed in order to display its associated SWHID and permalink.

  • revision
  • directory
  • content
revision badge
swh:1:rev:45f6a33c0276fb344367de006252ba59881fe62b
directory badge Iframe embedding
swh:1:dir:727b2b52c0867af9b12316adbb05d419f44ec1dd
content badge Iframe embedding
swh:1:cnt:eb11288714be61099aa3649493e39cdac3a1fcb5

This interface enables to generate software citations, provided that the root directory of browsed objects contains a citation.cff or codemeta.json file.
Select below a type of object currently browsed in order to generate citations for them.

  • revision
  • directory
  • content
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
table_average_iteration_vs_data_set_size_per_exact_or_accelerated_tsne.py
"""
This script creates a table with statistical values (minimum, average, standard deviation, maximum) on the run times of
embedding iterations for the different data sets. Specifically, these data are compared for the accelerated iterations
that use the polar quad tree acceleration structure as well as for the non-accelerated, exact hyperbolic t-SNE
implementation.
"""

###########
# IMPORTS #
###########

from pathlib import Path
import pandas as pd
import numpy as np

####################
# READING THE DATA #
####################
results_path = Path("../results/samples_per_data_set/")
df = pd.read_csv(results_path.joinpath("overview.csv"))
timings_dfs = []
for record in df.to_records():
    timing_df = pd.read_csv(record.run_directory.replace(".", str(results_path)) + "/timings.csv")
    timing_df = timing_df[(timing_df.time_type == "tot_gradient")]

    for cn in df.columns:
        timing_df[cn] = record[cn]
    timings_dfs.append(timing_df)

timings_df = pd.concat(timings_dfs, axis=0, ignore_index=True)
timings_df["early_exag"] = np.repeat(False, timings_df.shape[0])
timings_df.loc[timings_df.it_n <= 250, "early_exag"] = True
del timings_dfs

############################
# COMPUTING THE STATISTICS #
############################

# Work with the "equal length" data, as this splitting technique proved to be more efficient, filtering by
# "equal_length" contains both accelerated and exact data.
plot_times_df = timings_df.copy()
plot_times_df = plot_times_df[(plot_times_df.splitting_strategy == "equal_length")]

# Filter out only the exact, i.e., non-accelerated data
plot_times_df_exact = plot_times_df.copy()
plot_times_df_exact = plot_times_df_exact[(plot_times_df_exact.tsne_type == "exact")]

# Print Min, Avg, Std, Max of the timings per dataset per size
grouped = plot_times_df_exact.groupby(["dataset", "sample_size"])
print("Statistics exact:")
print(grouped["total_time"].min())
print(grouped["total_time"].mean())
print(grouped["total_time"].std())
print(grouped["total_time"].max())

# Filter out only the accelerated data, i.e., the data using the polar quad tree
plot_times_df_accelerated = plot_times_df.copy()
plot_times_df_accelerated = plot_times_df_accelerated[(plot_times_df_accelerated.tsne_type == "accelerated")]

# Print Min, Avg, Std, Max of the timings per dataset per size
grouped = plot_times_df_accelerated.groupby(["dataset", "sample_size"])
print("Statistics accelerated:")
print(grouped["total_time"].min())
print(grouped["total_time"].mean())
print(grouped["total_time"].std())
print(grouped["total_time"].max())
The diff you're trying to view is too large. Only the first 1000 changed files have been loaded.
Showing with 0 additions and 0 deletions (0 / 0 diffs computed)
swh spinner

Computing file changes ...

back to top

Software Heritage — Copyright (C) 2015–2025, The Software Heritage developers. License: GNU AGPLv3+.
The source code of Software Heritage itself is available on our development forge.
The source code files archived by Software Heritage are available under their own copyright and licenses.
Terms of use: Archive access, API— Content policy— Contact— JavaScript license information— Web API