Revision 46ab3c86cffa4d895d8eec15141606cab2e3c379 authored by LixiangZhao98 on 22 February 2024, 16:18:32 UTC, committed by LixiangZhao98 on 22 February 2024, 16:18:32 UTC
1 parent a0c7280
analysis.R
library(ggplot2)
library(reshape2)
library(glue)
library(dplyr)
library(ggpubr)
#we create some empty data frames to hold all events, the summary of time data, and the error data
fullTimeData <- read.table("logfiles/log/_globalTimeDummy.txt",header=TRUE,sep="\t",fill=TRUE,blank.lines.skip=TRUE,as.is=TRUE)
summaryTimeData <- read.table("logfiles/log/_summaryTimeDummy.txt",header=TRUE,sep="\t",fill=TRUE,blank.lines.skip=TRUE,as.is=TRUE)
fullErrorData <-read.table("logfiles/log/_globalErrorDummy.txt",
header=TRUE,
sep="\t",
fill=TRUE,
blank.lines.skip=TRUE,
as.is=TRUE
)
#now reading the logfiles
files <- (Sys.glob("logfiles/log/*.csv"))
print("Reading logfiles..." )
for (file in files){
data <- read.table(file,header=TRUE,sep=",",fill=TRUE,blank.lines.skip=TRUE,as.is=TRUE)
#we remove the last line that contains the error data
events <-tail(data, 2)
#from the events we extract the time the trial took
endTime <- as.numeric(events[events$Lable=="End","Time"])
#now because the last line has 10 entries and not 8 as the header suggests we have to read the last line again
s<-nrow(data)
lastline <- read.table(file,header=FALSE,sep=",",skip=s,col.names=c("V1","TruePositives","V2","TrueNegatives","V3","FalseNegatives","V4","FalsePositives"))
#now generate some new data frames from the extracted data
participantId <- data[2,2]
techniqueId <- data[2,4]
datasetId <- data[2,3]
repetitionId <- data[2,5]
#one for holding all the timing information
summaryTime <- data.frame(participantId,techniqueId,datasetId,repetitionId,c(endTime))
colnames(summaryTime) <- c("ParticipantID","TechniqueID","DatasetID","RepetitionID","Time")
#one for the error data
div <- 1000 #the division factor
fp <- lastline$FalsePositives / div
tp <- lastline$TruePositives / div
fn <- lastline$FalseNegatives / div
tn <- lastline$TrueNegatives / div
error <- data.frame(participantId,techniqueId,datasetId,repetitionId,tp,tn,fp,fn)
colnames(error) <- c("ParticipantID","TechniqueID","DatasetID","RepetitionID","TP","TN","FP","FN")
#add the data from this logfile to the global tables
fullTimeData <- rbind(fullTimeData,events)
fullErrorData <- rbind(fullErrorData,error)
summaryTimeData <- rbind(summaryTimeData,summaryTime)
}
print("done reading logfiles. Now combining and preparing the data")
#some data massaging here
#1: add a column in seconds for plotting purposes
summaryTimeData$TimeInS = summaryTimeData$Time
#2: logtransform time before averaging
summaryTimeData$LogTime=log(summaryTimeData$TimeInS)
#3: make the ids a factor
summaryTimeData$TechniqueID <- factor(summaryTimeData$TechniqueID)
fullErrorData$TechniqueID <- factor(fullErrorData$TechniqueID)
fullTimeData$TechniqueID <- factor(fullTimeData$TechniqueID)
summaryTimeData$RepetitionID <- factor(summaryTimeData$RepetitionID)
###################################################
createErrorStats <- function(errorDataSubset,filenamePrefix){
############## Calculate error stats ########################
errorDataSubset$Precision = errorDataSubset$TP / (errorDataSubset$TP + errorDataSubset$FP)
errorDataSubset$Recall = errorDataSubset$TP / (errorDataSubset$TP + errorDataSubset$FN)
errorDataSubset$F1 = 2 * (errorDataSubset$Precision * errorDataSubset$Recall) / (errorDataSubset$Precision + errorDataSubset$Recall)
errorDataSubset$MCC = ((errorDataSubset$TP * errorDataSubset$TN) - (errorDataSubset$FP * errorDataSubset$FN)) /
sqrt((errorDataSubset$TP + errorDataSubset$FP)*(errorDataSubset$TP + errorDataSubset$FN)*(errorDataSubset$TN+errorDataSubset$FP)*(errorDataSubset$TN+errorDataSubset$FN))
#replace NAs with 0s
e <- errorDataSubset
e[is.na(e <- errorDataSubset)] <- 0
errorMelt <- melt(e,id=c("ParticipantID","TechniqueID","DatasetID","RepetitionID"),measure.vars=c("F1","MCC"))
errorPerParticipant <- as.data.frame(acast(errorMelt,ParticipantID ~ TechniqueID ~ variable,mean))
#Selection technique: 0 MeTaPoint, 1 MeTaBrush, 2 MeTaPaint, 3 BaseLine
colnames(errorPerParticipant) <- c("T0_F1","T1_F1","T2_F1","T3_F1","T0_MCC","T1_MCC","T2_MCC","T3_MCC")
error_F1_mean0 <- bootstrapMeanCI(errorPerParticipant$T0_F1)
cat("The mean F1 error rate for technique 0 is ", formatCI(error_F1_mean0, ""), ", ", sep = "")
cat("\n")
error_F1_mean1 <- bootstrapMeanCI(errorPerParticipant$T1_F1)
cat("The mean F1 error rate for technique 1 is ", formatCI(error_F1_mean1, ""), ", ", sep = "")
cat("\n")
error_F1_mean2 <- bootstrapMeanCI(errorPerParticipant$T2_F1)
cat("The mean F1 error rate for technique 2 is ", formatCI(error_F1_mean2, ""), ", ", sep = "")
cat("\n")
error_F1_mean3 <- bootstrapMeanCI(errorPerParticipant$T3_F1)
cat("The mean F1 error rate for technique 3 is ", formatCI(error_F1_mean3, ""), ", ", sep = "")
cat("\n")
F1resultTable <- data.frame(error_F1_mean0,error_F1_mean1,error_F1_mean2,error_F1_mean3)
colnames(F1resultTable) <- c("MeTaPoint","MeTaBrush","MeTaPaint","BaseLine")
row.names(F1resultTable) <- c("mean_F1","lowerBound_CI","upperBound_CI")
cat("F1 Table\n")
print(F1resultTable)
write.table(F1resultTable, paste(filenamePrefix, "Means_F1.csv", sep=""), sep=",")
error_MCC_mean0 <- bootstrapMeanCI(errorPerParticipant$T0_MCC)
cat("The mean MCC error rate for technique 0 is ", formatCI(error_MCC_mean0, ""), ", ", sep = "")
cat("\n")
error_MCC_mean1 <- bootstrapMeanCI(errorPerParticipant$T1_MCC)
cat("The mean MCC error rate for technique 1 is ", formatCI(error_MCC_mean1, ""), ", ", sep = "")
cat("\n")
error_MCC_mean2 <- bootstrapMeanCI(errorPerParticipant$T2_MCC)
cat("The mean MCC error rate for technique 2 is ", formatCI(error_MCC_mean2, ""), ", ", sep = "")
cat("\n")
error_MCC_mean3 <- bootstrapMeanCI(errorPerParticipant$T3_MCC)
cat("The mean MCC error rate for technique 3 is ", formatCI(error_MCC_mean3, ""), ", ", sep = "")
cat("\n")
MCCresultTable <- data.frame(error_MCC_mean0,error_MCC_mean1,error_MCC_mean2,error_MCC_mean3)
colnames(MCCresultTable) <-c("MeTaPoint","MeTaBrush","MeTaPaint","BaseLine")
row.names(MCCresultTable) <- c("mean_MCC","lowerBound_CI","upperBound_CI")
cat("-------------------------------------\n")
cat("MCC Table\n")
print(MCCresultTable)
write.table(MCCresultTable, paste(filenamePrefix, "Means_MCC.csv", sep=""), sep=",")
pdf(file=paste(filenamePrefix, "F1Distribution.pdf", sep=""))
F1Distribution(errorDataSubset)
dev.off()
pdf(file=paste(filenamePrefix, "MCCDistribution.pdf", sep=""))
MCCDistribution(errorDataSubset)
dev.off()
pdf(file=paste(filenamePrefix, "barChartF1.pdf", sep=""), width=8, height=2)
barChartF1(F1resultTable)
dev.off()
pdf(file=paste(filenamePrefix, "barChartMCC.pdf", sep=""), width=8, height=2)
barChartMCC(MCCresultTable)
dev.off()
}
############## Calculate time stats #########################
createTimeStats <- function(summaryTimeDataSubset,filenamePrefix){
timeMelt <- melt(summaryTimeDataSubset,id=c("ParticipantID","TechniqueID","DatasetID","RepetitionID"),measure.vars=c("LogTime"))
participantPerTechnique <- as.data.frame(acast(timeMelt,ParticipantID ~ TechniqueID ~ variable,mean))
colnames(participantPerTechnique) <- c("T0","T1","T2","T3")
#now on to the confidence intervals
mean0 <- exp(exactMeanCI(participantPerTechnique$T0))
cat("The mean task completion time for technique 0 is ", formatCI(mean0, "s"), ". ", sep = "")
cat("\n")
mean1 <- exp(exactMeanCI(participantPerTechnique$T1))
cat("The mean task completion time for technique 1 is ", formatCI(mean1, "s"), ". ", sep = "")
cat("\n")
mean2 <- exp(exactMeanCI(participantPerTechnique$T2))
cat("The mean task completion time for technique 2 is ", formatCI(mean2, "s"), ". ", sep = "")
cat("\n")
mean3 <- exp(exactMeanCI(participantPerTechnique$T3))
cat("The mean task completion time for technique 3 is ", formatCI(mean3, "s"), ". ", sep = "")
cat("\n")
resultTable <- data.frame(mean0,mean1,mean2,mean3)
colnames(resultTable) <- c("MeTaPoint","MeTaBrush","MeTaPaint","BaseLine")
row.names(resultTable) <- c("mean_time","lowerBound_CI","upperBound_CI")
cat("Time Table\n")
print(resultTable)
write.table(resultTable, paste(filenamePrefix, "Means_time.csv", sep=""), sep=",")
barChartTime(resultTable)
pdf(file=paste(filenamePrefix, "boxplotTime.pdf", sep=""))
boxplotTime(summaryTimeDataSubset)
dev.off()
pdf(file=paste(filenamePrefix, "logTimeDistribution.pdf", sep=""))
logTimeDistribution(summaryTimeDataSubset)
dev.off()
pdf(file=paste(filenamePrefix, "boxplotTimePerDataset.pdf", sep=""))
boxplotTimePerDataset(summaryTimeDataSubset)
dev.off()
pdf(file=paste(filenamePrefix, "barChartTime.pdf", sep=""), width=8, height=2)
barChartTime(resultTable)
dev.off()
cat("Calculating differences\n")
#now plot the differences:
v1 <- participantPerTechnique$T0 - participantPerTechnique$T2
v2 <- participantPerTechnique$T1 - participantPerTechnique$T0
v3 <- participantPerTechnique$T1 - participantPerTechnique$T2
v100 <- participantPerTechnique$T3 - participantPerTechnique$T1
mean8 <- exp(exactMeanCI(v1))
mean9 <- exp(exactMeanCI(v2))
mean10 <- exp(exactMeanCI(v3))
mean100 <- exp(exactMeanCI(v100))
resultTableDifferences <- data.frame(mean8,mean9,mean10,mean100)
colnames(resultTableDifferences) <- c("MeTaPoint/MeTaPaint","MeTaBrush/MeTaPoint","MeTaBrush/MeTaPaint","Baseline/MeTaBrush")
row.names(resultTableDifferences) <- c("mean_time","lowerBound_CI","upperBound_CI")
cat("Time Table Differences\n")
print(resultTableDifferences)
pdf(file=paste(filenamePrefix, "barChartTimeDatasetsDifference.pdf", sep=""), width=8, height=2)
barChartTimeDifference(resultTableDifferences)
dev.off()
write.table(resultTableDifferences, paste(filenamePrefix, "Ratios_time.csv", sep=""), sep=",")
# ("MeTaPoint","MeTaBrush","MeTaPaint","BaseLine")
v1 <- participantPerTechnique$T0 - participantPerTechnique$T1 #MeTaPoint - MeTaBrush
v2 <- participantPerTechnique$T0 - participantPerTechnique$T2 #MeTaPoint - MeTaPaint
v3 <- participantPerTechnique$T0 - participantPerTechnique$T3 #MeTaPoint - BaseLine
v4 <- participantPerTechnique$T1 - participantPerTechnique$T2 #MeTaBrush - MeTaPaint
v5 <- participantPerTechnique$T1 - participantPerTechnique$T3 #MeTaBrush - BaseLine
v6 <- participantPerTechnique$T2 - participantPerTechnique$T3 #MeTaPaint - BaseLine
mean11 <- exp(exactMeanCI(v1))
mean12 <- exp(exactMeanCI(v2))
mean13 <- exp(exactMeanCI(v3))
mean14 <- exp(exactMeanCI(v4))
mean15 <- exp(exactMeanCI(v5))
mean16 <- exp(exactMeanCI(v6))
resultTableDifferences <- data.frame(mean11,mean12,mean13,mean14,mean15,mean16)
colnames(resultTableDifferences) <- c("MeTaPoint/MeTaBrush","MeTaPoint/MeTaPaint","MeTaPoint/BaseLine","MeTaBrush/MeTaPaint","MeTaBrush/BaseLine","MeTaPaint/BaseLine")
row.names(resultTableDifferences) <- c("mean_time","lowerBound_CI","upperBound_CI")
pdf(file=paste(filenamePrefix, "barChartTimeDatasetsDifference2.pdf", sep=""), width=8, height=3)
barChartTimeDifference2(resultTableDifferences)
dev.off()
write.table(resultTableDifferences, paste(filenamePrefix, "Ratios_time2.csv", sep=""), sep=",")
}
##############PLOTTING CODE BELOW
require(grid)
barChartMCC <- function(MCCresultTable){
tr <- t(MCCresultTable)
tr <- as.data.frame(tr)
#now need to calculate one number for the width of the interval
tr$CI2 <- tr$upperBound_CI - tr$mean_MCC
tr$CI1 <- tr$mean_MCC - tr$lowerBound_CI
#add a technique column
tr$technique <- factor(c(0,1,2,3))
g <- ggplot(tr, aes(x=technique, y=mean_MCC)) +
geom_bar(stat="identity",fill = I("#CCCCCC")) +
geom_errorbar(aes(ymin=mean_MCC-CI1, ymax=mean_MCC+CI2),
width=0, # Width of the error bars
size = 1.1
) +
labs(x = "", y = "MCC score") +
scale_x_discrete(name="",breaks=c("0","1","2","3"),labels=c("MeTaPoint","MeTaBrush","MeTaPaint","BaseLine")) +
coord_flip() +
theme(panel.background = element_rect(fill = 'white', colour = 'white'),axis.title=element_text(size = rel(1.2), colour = "black"),axis.text=element_text(size = rel(1.2), colour = "black"),panel.grid.major = element_line(colour = "#DDDDDD"),panel.grid.major.y = element_blank(), panel.grid.minor.y = element_blank())+
geom_point(size=4, colour="black") # dots
print(g)
}
barChartF1 <- function(F1resultTable){
tr <- t(F1resultTable)
tr <- as.data.frame(tr)
#now need to calculate one number for the width of the interval
tr$CI2 <- tr$upperBound_CI - tr$mean_F1
tr$CI1 <- tr$mean_F1 - tr$lowerBound_CI
#add a technique column
tr$technique <- factor(c(0,1,2,3))
g <- ggplot(tr, aes(x=technique, y=mean_F1)) +
geom_bar(stat="identity",fill = I("#CCCCCC")) +
geom_errorbar(aes(ymin=mean_F1-CI1, ymax=mean_F1+CI2),
width=0, # Width of the error bars
size = 1.1
) +
labs(x = "", y = "F1 score") +
scale_x_discrete(name="",breaks=c("0","1","2","3"),labels=c("MeTaPoint","MeTaBrush","MeTaPaint","BaseLine")) +
coord_flip() +
theme(panel.background = element_rect(fill = 'white', colour = 'white'),axis.title=element_text(size = rel(1.2), colour = "black"),axis.text=element_text(size = rel(1.2), colour = "black"),panel.grid.major = element_line(colour = "#DDDDDD"),panel.grid.major.y = element_blank(), panel.grid.minor.y = element_blank())+
geom_point(size=4, colour="black") # dots
print(g)
}
barChartTimeDifference <- function(resultTable){
print("Creating difference time table")
tr <- t(resultTable)
tr <- as.data.frame(tr)
#now need to calculate one number for the width of the interval
tr$CI2 <- tr$upperBound_CI - tr$mean_time
tr$CI1 <- tr$mean_time - tr$lowerBound_CI
#add a technique column
tr$technique <- factor(c(0,1,2,3))
g <- ggplot(tr, aes(x=technique, y=mean_time)) +
#geom_bar(stat="identity",fill = I("#CCCCCC")) +
geom_errorbar(aes(ymin=mean_time-CI1, ymax=mean_time+CI2),
width=0, # Width of the error bars
size = 1.1
) +
labs(x = "", y = "Ratio between completion times",title="no effect") +
scale_x_discrete(name="",breaks=c("0","1","2","3"),labels=c("MeTaPoint/MeTaPaint","MeTaPoint/MeTaBrush","MeTaPaint/MeTaBrush","MeTaBrush/Baseline")) +
scale_y_continuous(limits = c(0.5,3)) +
coord_flip() +
theme(plot.title=element_text(hjust=.245),panel.background = element_rect(fill = 'white', colour = 'white'),axis.title=element_text(size = rel(1.2), colour = "black"),axis.text=element_text(size = rel(1.2), colour = "black"),panel.grid.major = element_line(colour = "#DDDDDD"),panel.grid.major.y = element_blank(), panel.grid.minor.y = element_blank())+
geom_point(size=4, colour="black") + # dots
geom_hline(yintercept = 1)
print(g)
}
barChartTimeDifference2 <- function(resultTable){
print("Creating difference time table")
tr <- t(resultTable)
tr <- as.data.frame(tr)
#now need to calculate one number for the width of the interval
tr$CI2 <- tr$upperBound_CI - tr$mean_time
tr$CI1 <- tr$mean_time - tr$lowerBound_CI
#add a technique column
tr$technique <- factor(c(0,1,2,3,4,5))
g <- ggplot(tr, aes(x=technique, y=mean_time)) +
#geom_bar(stat="identity",fill = I("#CCCCCC")) +
geom_errorbar(aes(ymin=mean_time-CI1, ymax=mean_time+CI2),
width=0, # Width of the error bars
size = 1.1
) +
labs(x = "", y = "Ratio between completion times",title="no effect") +
scale_x_discrete(name="",breaks=c("0","1","2","3","4","5"),labels=c("MeTaPoint/MeTaBrush","MeTaPoint/MeTaPaint","MeTaPoint/BaseLine","MeTaBrush/MeTaPaint","MeTaBrush/BaseLine","MeTaPaint/BaseLine")) +
scale_y_continuous(limits = c(1,10)) +
coord_flip() +
theme(plot.title=element_text(hjust=.5),panel.background = element_rect(fill = 'white', colour = 'white'),axis.title=element_text(size = rel(1.2), colour = "black"),axis.text=element_text(size = rel(1.2), colour = "black"),panel.grid.major = element_line(colour = "#DDDDDD"),panel.grid.major.y = element_blank(), panel.grid.minor.y = element_blank())+
geom_point(size=4, colour="black") + # dots
geom_hline(yintercept = 1)
print(g)
}
barChartTime <- function(resultTable){
tr <- t(resultTable)
tr <- as.data.frame(tr)
#now need to calculate one number for the width of the interval
tr$CI2 <- tr$upperBound_CI - tr$mean_time
tr$CI1 <- tr$mean_time - tr$lowerBound_CI
#add a technique column
tr$technique <- factor(c(0,1,2,3))
g <- ggplot(tr, aes(x=technique, y=mean_time)) +
geom_bar(stat="identity",fill = I("#CCCCCC")) +
geom_errorbar(aes(ymin=mean_time-CI1, ymax=mean_time+CI2),
width=0, # Width of the error bars
size = 1.1
) +
labs(x = "", y = "Completion time (in seconds)") +
scale_y_continuous(limits = c(0,60)) +
scale_x_discrete(name="",breaks=c("0","1","2","3"),labels=c("MeTaPoint","MeTaBrush","MeTaPaint","BaseLine")) +
coord_flip() +
theme(panel.background = element_rect(fill = 'white', colour = 'white'),axis.title=element_text(size = rel(1.2), colour = "black"),axis.text=element_text(size = rel(1.2), colour = "black"),panel.grid.major = element_line(colour = "#DDDDDD"),panel.grid.major.y = element_blank(), panel.grid.minor.y = element_blank())+
geom_point(size=4, colour="black") # dots
print(g)
}
barChartTimeDatasets <- function(resultTable){
tr <- t(resultTable)
tr <- as.data.frame(tr)
#now need to calculate one number for the width of the interval
tr$CI2 <- tr$upperBound_CI - tr$mean_time
tr$CI1 <- tr$mean_time - tr$lowerBound_CI
#add a technique column
tr$technique <- factor(c(4,5,6,7))
g <- ggplot(tr, aes(x=technique, y=mean_time)) +
geom_bar(stat="identity",fill = I("#CCCCCC")) +
geom_errorbar(aes(ymin=mean_time-CI1, ymax=mean_time+CI2),
width=0, # Width of the error bars
size = 1.1
) +
labs(x = "", y = "Completion time (in seconds)") +
scale_x_discrete(name="",breaks=c("4","5","6","7"),labels=c("Clusters","Shell","Rings","Simulation")) +
coord_flip() +
theme(panel.background = element_rect(fill = 'white', colour = 'white'),axis.title=element_text(size = rel(1.2), colour = "black"),axis.text=element_text(size = rel(1.2), colour = "black"),panel.grid.major = element_line(colour = "#DDDDDD"),panel.grid.major.y = element_blank(), panel.grid.minor.y = element_blank())+
geom_point(size=4, colour="black") # dots
print(g)
}
boxplotTime <- function(summaryTimeDataSubset){
g <- ggplot(summaryTimeDataSubset,aes(x=as.factor(TechniqueID),y=TimeInS,fill=as.factor(TechniqueID)))+
geom_boxplot() +
# labs(title="Overall time per technique") +
labs(x = "Technique", y = "Time in s") +
scale_x_discrete(name="",breaks=c("0","1","2","3"),labels=c("MeTaPoint","MeTaBrush","MeTaPaint","BaseLine"))
print(g)
}
boxplotTimePerDataset <- function(summaryTimeDataSubset){
g <- ggplot(summaryTimeDataSubset,aes(x=as.factor(TechniqueID),y=TimeInS,fill=as.factor(TechniqueID)))+
geom_boxplot() +
# labs(title="Overall time per technique") +
labs(x = "Technique", y = "Time in s") +
scale_fill_discrete(name="Technique",breaks=c("0","1","2","3"),labels=c("MeTaPoint","MeTaBrush","MeTaPaint","BaseLine"))+
scale_x_discrete(name="",breaks=c("0","1","2","3"),labels=c("MeTaPoint","MeTaBrush","MeTaPaint","BaseLine")) +
facet_grid(DatasetID~.)
print(g)
}
logTimeDistribution <- function(summaryTimeDataSubset){
g <- qplot(LogTime,data=summaryTimeDataSubset,facets=.~TechniqueID)
print(g)
}
F1Distribution <- function(errorDataSubset){
g <- qplot(F1,data=errorDataSubset,facets=.~TechniqueID)
print(g)
}
MCCDistribution <- function(errorDataSubset){
g <- qplot(MCC,data=errorDataSubset,facets=.~TechniqueID)
print(g)
}
##############take just a subset of repetitions
#full data for 0123dataset, repetitions 2 and 3
cat("****************************************************\n")
cat("Preparing time data for 0123 datasets\n")
summaryTimeDataSubset <- summaryTimeData[ which(as.numeric(summaryTimeData$RepetitionID) > 0 &as.numeric(summaryTimeData$DatasetID)!=4), ]
createTimeStats(summaryTimeDataSubset,"resultFiles/log/time_0123Datasets_rep23")
cat("Preparing error data for 0123 datasets\n")
errorDataSubset <- fullErrorData[ which(as.numeric(fullErrorData$RepetitionID) > 0&as.numeric(summaryTimeData$DatasetID)!=4), ]
createErrorStats(errorDataSubset,"resultFiles/log/error_0123Datasets_rep23_")
cat("****************************************************\n")
#dataset0 only, rep 2 and 3
cat("Preparing time data for dataset 0\n")
summaryTimeDataSubset = subset(summaryTimeData, as.numeric(RepetitionID) > 0 & DatasetID == "0")
createTimeStats(summaryTimeDataSubset,"resultFiles/log/time_Dataset0_rep23")
cat("Preparing error data for dataset 0\n")
errorDataSubset <- subset(fullErrorData, as.numeric(fullErrorData$RepetitionID) >0 & DatasetID == "0")
createErrorStats(errorDataSubset,"resultFiles/log/error_Dataset0_rep23_")
cat("****************************************************\n")
#dataset1 only, rep 2 and 3
cat("Preparing time data for dataset 1\n")
summaryTimeDataSubset <- subset(summaryTimeData, as.numeric(RepetitionID) > 0 & DatasetID == "1")
createTimeStats(summaryTimeDataSubset,"resultFiles/log/time_Dataset1_rep23")
cat("Preparing error data for dataset 1\n")
errorDataSubset <- subset(fullErrorData, as.numeric(fullErrorData$RepetitionID) > 0 & DatasetID == "1")
createErrorStats(errorDataSubset,"resultFiles/log/error_Dataset1_rep23_")
cat("****************************************************\n")
#dataset2 only rep 2 and 3
cat("Preparing time data for dataset 2\n")
summaryTimeDataSubset <- subset(summaryTimeData, as.numeric(RepetitionID) > 0 & DatasetID == "2")
createTimeStats(summaryTimeDataSubset,"resultFiles/log/time_Dataset2_rep23")
cat("Preparing error data for dataset 2\n")
errorDataSubset <- subset(fullErrorData, as.numeric(fullErrorData$RepetitionID) > 0 & DatasetID == "2")
createErrorStats(errorDataSubset,"resultFiles/log/error_Dataset2_rep23_")
cat("****************************************************\n")
#dataset3 only rep 2 and 3
cat("Preparing time data for dataset 3\n")
summaryTimeDataSubset <- subset(summaryTimeData, as.numeric(RepetitionID) > 0 & DatasetID == "3")
createTimeStats(summaryTimeDataSubset,"resultFiles/log/time_Dataset3_rep23")
cat("Preparing error data for dataset 3\n")
errorDataSubset <- subset(fullErrorData, as.numeric(fullErrorData$RepetitionID) > 0 & DatasetID == "3")
createErrorStats(errorDataSubset,"resultFiles/log/error_Dataset3_rep23_")
cat("****************************************************\n")
#dataset4 only rep 2 and 3
cat("Preparing time data for dataset 4\n")
summaryTimeDataSubset <- subset(summaryTimeData, as.numeric(RepetitionID) > 0 & DatasetID == "4")
createTimeStats(summaryTimeDataSubset,"resultFiles/log/time_Dataset4_rep23")
cat("Preparing error data for dataset 4\n")
errorDataSubset <- subset(fullErrorData, as.numeric(fullErrorData$RepetitionID) > 0 & DatasetID == "4")
createErrorStats(errorDataSubset,"resultFiles/log/error_Dataset4_rep23_")
# a = subset(summaryTimeData, as.numeric(RepetitionID) > 0 & DatasetID == "0" & TechniqueID=="0")
# ggdensity(a$Time,
# main = "Density plot of sepal length",
# xlab = "Time")
#
# ggqqplot(a$Time)
Computing file changes ...