Revision 474095e46cd14421821da3201a9fd6a4c070996b authored by Linus Torvalds on 24 April 2015, 16:28:01 UTC, committed by Linus Torvalds on 24 April 2015, 16:28:01 UTC
Pull md updates from Neil Brown:
 "More updates that usual this time.  A few have performance impacts
  which hould mostly be positive, but RAID5 (in particular) can be very
  work-load ensitive...  We'll have to wait and see.

  Highlights:

   - "experimental" code for managing md/raid1 across a cluster using
     DLM.  Code is not ready for general use and triggers a WARNING if
     used.  However it is looking good and mostly done and having in
     mainline will help co-ordinate development.

   - RAID5/6 can now batch multiple (4K wide) stripe_heads so as to
     handle a full (chunk wide) stripe as a single unit.

   - RAID6 can now perform read-modify-write cycles which should help
     performance on larger arrays: 6 or more devices.

   - RAID5/6 stripe cache now grows and shrinks dynamically.  The value
     set is used as a minimum.

   - Resync is now allowed to go a little faster than the 'mininum' when
     there is competing IO.  How much faster depends on the speed of the
     devices, so the effective minimum should scale with device speed to
     some extent"

* tag 'md/4.1' of git://neil.brown.name/md: (58 commits)
  md/raid5: don't do chunk aligned read on degraded array.
  md/raid5: allow the stripe_cache to grow and shrink.
  md/raid5: change ->inactive_blocked to a bit-flag.
  md/raid5: move max_nr_stripes management into grow_one_stripe and drop_one_stripe
  md/raid5: pass gfp_t arg to grow_one_stripe()
  md/raid5: introduce configuration option rmw_level
  md/raid5: activate raid6 rmw feature
  md/raid6 algorithms: xor_syndrome() for SSE2
  md/raid6 algorithms: xor_syndrome() for generic int
  md/raid6 algorithms: improve test program
  md/raid6 algorithms: delta syndrome functions
  raid5: handle expansion/resync case with stripe batching
  raid5: handle io error of batch list
  RAID5: batch adjacent full stripe write
  raid5: track overwrite disk count
  raid5: add a new flag to track if a stripe can be batched
  raid5: use flex_array for scribble data
  md raid0: access mddev->queue (request queue member) conditionally because it is not set when accessed from dm-raid
  md: allow resync to go faster when there is competing IO.
  md: remove 'go_faster' option from ->sync_request()
  ...
2 parent s d56a669 + 9ffc8f7
Raw File
digsig.txt
Digital Signature Verification API

CONTENTS

1. Introduction
2. API
3. User-space utilities


1. Introduction

Digital signature verification API provides a method to verify digital signature.
Currently digital signatures are used by the IMA/EVM integrity protection subsystem.

Digital signature verification is implemented using cut-down kernel port of
GnuPG multi-precision integers (MPI) library. The kernel port provides
memory allocation errors handling, has been refactored according to kernel
coding style, and checkpatch.pl reported errors and warnings have been fixed.

Public key and signature consist of header and MPIs.

struct pubkey_hdr {
	uint8_t		version;	/* key format version */
	time_t		timestamp;	/* key made, always 0 for now */
	uint8_t		algo;
	uint8_t		nmpi;
	char		mpi[0];
} __packed;

struct signature_hdr {
	uint8_t		version;	/* signature format version */
	time_t		timestamp;	/* signature made */
	uint8_t		algo;
	uint8_t		hash;
	uint8_t		keyid[8];
	uint8_t		nmpi;
	char		mpi[0];
} __packed;

keyid equals to SHA1[12-19] over the total key content.
Signature header is used as an input to generate a signature.
Such approach insures that key or signature header could not be changed.
It protects timestamp from been changed and can be used for rollback
protection.

2. API

API currently includes only 1 function:

	digsig_verify() - digital signature verification with public key


/**
 * digsig_verify() - digital signature verification with public key
 * @keyring:	keyring to search key in
 * @sig:	digital signature
 * @sigen:	length of the signature
 * @data:	data
 * @datalen:	length of the data
 * @return:	0 on success, -EINVAL otherwise
 *
 * Verifies data integrity against digital signature.
 * Currently only RSA is supported.
 * Normally hash of the content is used as a data for this function.
 *
 */
int digsig_verify(struct key *keyring, const char *sig, int siglen,
						const char *data, int datalen);

3. User-space utilities

The signing and key management utilities evm-utils provide functionality
to generate signatures, to load keys into the kernel keyring.
Keys can be in PEM or converted to the kernel format.
When the key is added to the kernel keyring, the keyid defines the name
of the key: 5D2B05FC633EE3E8 in the example bellow.

Here is example output of the keyctl utility.

$ keyctl show
Session Keyring
       -3 --alswrv      0     0  keyring: _ses
603976250 --alswrv      0    -1   \_ keyring: _uid.0
817777377 --alswrv      0     0       \_ user: kmk
891974900 --alswrv      0     0       \_ encrypted: evm-key
170323636 --alswrv      0     0       \_ keyring: _module
548221616 --alswrv      0     0       \_ keyring: _ima
128198054 --alswrv      0     0       \_ keyring: _evm

$ keyctl list 128198054
1 key in keyring:
620789745: --alswrv     0     0 user: 5D2B05FC633EE3E8


Dmitry Kasatkin
06.10.2011
back to top