Revision 474095e46cd14421821da3201a9fd6a4c070996b authored by Linus Torvalds on 24 April 2015, 16:28:01 UTC, committed by Linus Torvalds on 24 April 2015, 16:28:01 UTC
Pull md updates from Neil Brown:
 "More updates that usual this time.  A few have performance impacts
  which hould mostly be positive, but RAID5 (in particular) can be very
  work-load ensitive...  We'll have to wait and see.

  Highlights:

   - "experimental" code for managing md/raid1 across a cluster using
     DLM.  Code is not ready for general use and triggers a WARNING if
     used.  However it is looking good and mostly done and having in
     mainline will help co-ordinate development.

   - RAID5/6 can now batch multiple (4K wide) stripe_heads so as to
     handle a full (chunk wide) stripe as a single unit.

   - RAID6 can now perform read-modify-write cycles which should help
     performance on larger arrays: 6 or more devices.

   - RAID5/6 stripe cache now grows and shrinks dynamically.  The value
     set is used as a minimum.

   - Resync is now allowed to go a little faster than the 'mininum' when
     there is competing IO.  How much faster depends on the speed of the
     devices, so the effective minimum should scale with device speed to
     some extent"

* tag 'md/4.1' of git://neil.brown.name/md: (58 commits)
  md/raid5: don't do chunk aligned read on degraded array.
  md/raid5: allow the stripe_cache to grow and shrink.
  md/raid5: change ->inactive_blocked to a bit-flag.
  md/raid5: move max_nr_stripes management into grow_one_stripe and drop_one_stripe
  md/raid5: pass gfp_t arg to grow_one_stripe()
  md/raid5: introduce configuration option rmw_level
  md/raid5: activate raid6 rmw feature
  md/raid6 algorithms: xor_syndrome() for SSE2
  md/raid6 algorithms: xor_syndrome() for generic int
  md/raid6 algorithms: improve test program
  md/raid6 algorithms: delta syndrome functions
  raid5: handle expansion/resync case with stripe batching
  raid5: handle io error of batch list
  RAID5: batch adjacent full stripe write
  raid5: track overwrite disk count
  raid5: add a new flag to track if a stripe can be batched
  raid5: use flex_array for scribble data
  md raid0: access mddev->queue (request queue member) conditionally because it is not set when accessed from dm-raid
  md: allow resync to go faster when there is competing IO.
  md: remove 'go_faster' option from ->sync_request()
  ...
2 parent s d56a669 + 9ffc8f7
Raw File
lzo.txt

LZO stream format as understood by Linux's LZO decompressor
===========================================================

Introduction

  This is not a specification. No specification seems to be publicly available
  for the LZO stream format. This document describes what input format the LZO
  decompressor as implemented in the Linux kernel understands. The file subject
  of this analysis is lib/lzo/lzo1x_decompress_safe.c. No analysis was made on
  the compressor nor on any other implementations though it seems likely that
  the format matches the standard one. The purpose of this document is to
  better understand what the code does in order to propose more efficient fixes
  for future bug reports.

Description

  The stream is composed of a series of instructions, operands, and data. The
  instructions consist in a few bits representing an opcode, and bits forming
  the operands for the instruction, whose size and position depend on the
  opcode and on the number of literals copied by previous instruction. The
  operands are used to indicate :

    - a distance when copying data from the dictionary (past output buffer)
    - a length (number of bytes to copy from dictionary)
    - the number of literals to copy, which is retained in variable "state"
      as a piece of information for next instructions.

  Optionally depending on the opcode and operands, extra data may follow. These
  extra data can be a complement for the operand (eg: a length or a distance
  encoded on larger values), or a literal to be copied to the output buffer.

  The first byte of the block follows a different encoding from other bytes, it
  seems to be optimized for literal use only, since there is no dictionary yet
  prior to that byte.

  Lengths are always encoded on a variable size starting with a small number
  of bits in the operand. If the number of bits isn't enough to represent the
  length, up to 255 may be added in increments by consuming more bytes with a
  rate of at most 255 per extra byte (thus the compression ratio cannot exceed
  around 255:1). The variable length encoding using #bits is always the same :

       length = byte & ((1 << #bits) - 1)
       if (!length) {
               length = ((1 << #bits) - 1)
               length += 255*(number of zero bytes)
               length += first-non-zero-byte
       }
       length += constant (generally 2 or 3)

  For references to the dictionary, distances are relative to the output
  pointer. Distances are encoded using very few bits belonging to certain
  ranges, resulting in multiple copy instructions using different encodings.
  Certain encodings involve one extra byte, others involve two extra bytes
  forming a little-endian 16-bit quantity (marked LE16 below).

  After any instruction except the large literal copy, 0, 1, 2 or 3 literals
  are copied before starting the next instruction. The number of literals that
  were copied may change the meaning and behaviour of the next instruction. In
  practice, only one instruction needs to know whether 0, less than 4, or more
  literals were copied. This is the information stored in the <state> variable
  in this implementation. This number of immediate literals to be copied is
  generally encoded in the last two bits of the instruction but may also be
  taken from the last two bits of an extra operand (eg: distance).

  End of stream is declared when a block copy of distance 0 is seen. Only one
  instruction may encode this distance (0001HLLL), it takes one LE16 operand
  for the distance, thus requiring 3 bytes.

  IMPORTANT NOTE : in the code some length checks are missing because certain
  instructions are called under the assumption that a certain number of bytes
  follow because it has already been garanteed before parsing the instructions.
  They just have to "refill" this credit if they consume extra bytes. This is
  an implementation design choice independant on the algorithm or encoding.

Byte sequences

  First byte encoding :

      0..17   : follow regular instruction encoding, see below. It is worth
                noting that codes 16 and 17 will represent a block copy from
                the dictionary which is empty, and that they will always be
                invalid at this place.

      18..21  : copy 0..3 literals
                state = (byte - 17) = 0..3  [ copy <state> literals ]
                skip byte

      22..255 : copy literal string
                length = (byte - 17) = 4..238
                state = 4 [ don't copy extra literals ]
                skip byte

  Instruction encoding :

      0 0 0 0 X X X X  (0..15)
        Depends on the number of literals copied by the last instruction.
        If last instruction did not copy any literal (state == 0), this
        encoding will be a copy of 4 or more literal, and must be interpreted
        like this :

           0 0 0 0 L L L L  (0..15)  : copy long literal string
           length = 3 + (L ?: 15 + (zero_bytes * 255) + non_zero_byte)
           state = 4  (no extra literals are copied)

        If last instruction used to copy between 1 to 3 literals (encoded in
        the instruction's opcode or distance), the instruction is a copy of a
        2-byte block from the dictionary within a 1kB distance. It is worth
        noting that this instruction provides little savings since it uses 2
        bytes to encode a copy of 2 other bytes but it encodes the number of
        following literals for free. It must be interpreted like this :

           0 0 0 0 D D S S  (0..15)  : copy 2 bytes from <= 1kB distance
           length = 2
           state = S (copy S literals after this block)
         Always followed by exactly one byte : H H H H H H H H
           distance = (H << 2) + D + 1

        If last instruction used to copy 4 or more literals (as detected by
        state == 4), the instruction becomes a copy of a 3-byte block from the
        dictionary from a 2..3kB distance, and must be interpreted like this :

           0 0 0 0 D D S S  (0..15)  : copy 3 bytes from 2..3 kB distance
           length = 3
           state = S (copy S literals after this block)
         Always followed by exactly one byte : H H H H H H H H
           distance = (H << 2) + D + 2049

      0 0 0 1 H L L L  (16..31)
           Copy of a block within 16..48kB distance (preferably less than 10B)
           length = 2 + (L ?: 7 + (zero_bytes * 255) + non_zero_byte)
        Always followed by exactly one LE16 :  D D D D D D D D : D D D D D D S S
           distance = 16384 + (H << 14) + D
           state = S (copy S literals after this block)
           End of stream is reached if distance == 16384

      0 0 1 L L L L L  (32..63)
           Copy of small block within 16kB distance (preferably less than 34B)
           length = 2 + (L ?: 31 + (zero_bytes * 255) + non_zero_byte)
        Always followed by exactly one LE16 :  D D D D D D D D : D D D D D D S S
           distance = D + 1
           state = S (copy S literals after this block)

      0 1 L D D D S S  (64..127)
           Copy 3-4 bytes from block within 2kB distance
           state = S (copy S literals after this block)
           length = 3 + L
         Always followed by exactly one byte : H H H H H H H H
           distance = (H << 3) + D + 1

      1 L L D D D S S  (128..255)
           Copy 5-8 bytes from block within 2kB distance
           state = S (copy S literals after this block)
           length = 5 + L
         Always followed by exactly one byte : H H H H H H H H
           distance = (H << 3) + D + 1

Authors

  This document was written by Willy Tarreau <w@1wt.eu> on 2014/07/19 during an
  analysis of the decompression code available in Linux 3.16-rc5. The code is
  tricky, it is possible that this document contains mistakes or that a few
  corner cases were overlooked. In any case, please report any doubt, fix, or
  proposed updates to the author(s) so that the document can be updated.
back to top