Revision 474095e46cd14421821da3201a9fd6a4c070996b authored by Linus Torvalds on 24 April 2015, 16:28:01 UTC, committed by Linus Torvalds on 24 April 2015, 16:28:01 UTC
Pull md updates from Neil Brown:
 "More updates that usual this time.  A few have performance impacts
  which hould mostly be positive, but RAID5 (in particular) can be very
  work-load ensitive...  We'll have to wait and see.

  Highlights:

   - "experimental" code for managing md/raid1 across a cluster using
     DLM.  Code is not ready for general use and triggers a WARNING if
     used.  However it is looking good and mostly done and having in
     mainline will help co-ordinate development.

   - RAID5/6 can now batch multiple (4K wide) stripe_heads so as to
     handle a full (chunk wide) stripe as a single unit.

   - RAID6 can now perform read-modify-write cycles which should help
     performance on larger arrays: 6 or more devices.

   - RAID5/6 stripe cache now grows and shrinks dynamically.  The value
     set is used as a minimum.

   - Resync is now allowed to go a little faster than the 'mininum' when
     there is competing IO.  How much faster depends on the speed of the
     devices, so the effective minimum should scale with device speed to
     some extent"

* tag 'md/4.1' of git://neil.brown.name/md: (58 commits)
  md/raid5: don't do chunk aligned read on degraded array.
  md/raid5: allow the stripe_cache to grow and shrink.
  md/raid5: change ->inactive_blocked to a bit-flag.
  md/raid5: move max_nr_stripes management into grow_one_stripe and drop_one_stripe
  md/raid5: pass gfp_t arg to grow_one_stripe()
  md/raid5: introduce configuration option rmw_level
  md/raid5: activate raid6 rmw feature
  md/raid6 algorithms: xor_syndrome() for SSE2
  md/raid6 algorithms: xor_syndrome() for generic int
  md/raid6 algorithms: improve test program
  md/raid6 algorithms: delta syndrome functions
  raid5: handle expansion/resync case with stripe batching
  raid5: handle io error of batch list
  RAID5: batch adjacent full stripe write
  raid5: track overwrite disk count
  raid5: add a new flag to track if a stripe can be batched
  raid5: use flex_array for scribble data
  md raid0: access mddev->queue (request queue member) conditionally because it is not set when accessed from dm-raid
  md: allow resync to go faster when there is competing IO.
  md: remove 'go_faster' option from ->sync_request()
  ...
2 parent s d56a669 + 9ffc8f7
Raw File
rfkill.txt
rfkill - RF kill switch support
===============================

1. Introduction
2. Implementation details
3. Kernel API
4. Userspace support


1. Introduction

The rfkill subsystem provides a generic interface to disabling any radio
transmitter in the system. When a transmitter is blocked, it shall not
radiate any power.

The subsystem also provides the ability to react on button presses and
disable all transmitters of a certain type (or all). This is intended for
situations where transmitters need to be turned off, for example on
aircraft.

The rfkill subsystem has a concept of "hard" and "soft" block, which
differ little in their meaning (block == transmitters off) but rather in
whether they can be changed or not:
 - hard block: read-only radio block that cannot be overridden by software
 - soft block: writable radio block (need not be readable) that is set by
               the system software.

The rfkill subsystem has two parameters, rfkill.default_state and
rfkill.master_switch_mode, which are documented in kernel-parameters.txt.


2. Implementation details

The rfkill subsystem is composed of three main components:
 * the rfkill core,
 * the deprecated rfkill-input module (an input layer handler, being
   replaced by userspace policy code) and
 * the rfkill drivers.

The rfkill core provides API for kernel drivers to register their radio
transmitter with the kernel, methods for turning it on and off and, letting
the system know about hardware-disabled states that may be implemented on
the device.

The rfkill core code also notifies userspace of state changes, and provides
ways for userspace to query the current states. See the "Userspace support"
section below.

When the device is hard-blocked (either by a call to rfkill_set_hw_state()
or from query_hw_block) set_block() will be invoked for additional software
block, but drivers can ignore the method call since they can use the return
value of the function rfkill_set_hw_state() to sync the software state
instead of keeping track of calls to set_block(). In fact, drivers should
use the return value of rfkill_set_hw_state() unless the hardware actually
keeps track of soft and hard block separately.


3. Kernel API


Drivers for radio transmitters normally implement an rfkill driver.

Platform drivers might implement input devices if the rfkill button is just
that, a button. If that button influences the hardware then you need to
implement an rfkill driver instead. This also applies if the platform provides
a way to turn on/off the transmitter(s).

For some platforms, it is possible that the hardware state changes during
suspend/hibernation, in which case it will be necessary to update the rfkill
core with the current state is at resume time.

To create an rfkill driver, driver's Kconfig needs to have

	depends on RFKILL || !RFKILL

to ensure the driver cannot be built-in when rfkill is modular. The !RFKILL
case allows the driver to be built when rfkill is not configured, which
case all rfkill API can still be used but will be provided by static inlines
which compile to almost nothing.

Calling rfkill_set_hw_state() when a state change happens is required from
rfkill drivers that control devices that can be hard-blocked unless they also
assign the poll_hw_block() callback (then the rfkill core will poll the
device). Don't do this unless you cannot get the event in any other way.



5. Userspace support

The recommended userspace interface to use is /dev/rfkill, which is a misc
character device that allows userspace to obtain and set the state of rfkill
devices and sets of devices. It also notifies userspace about device addition
and removal. The API is a simple read/write API that is defined in
linux/rfkill.h, with one ioctl that allows turning off the deprecated input
handler in the kernel for the transition period.

Except for the one ioctl, communication with the kernel is done via read()
and write() of instances of 'struct rfkill_event'. In this structure, the
soft and hard block are properly separated (unlike sysfs, see below) and
userspace is able to get a consistent snapshot of all rfkill devices in the
system. Also, it is possible to switch all rfkill drivers (or all drivers of
a specified type) into a state which also updates the default state for
hotplugged devices.

After an application opens /dev/rfkill, it can read the current state of all
devices. Changes can be either obtained by either polling the descriptor for
hotplug or state change events or by listening for uevents emitted by the
rfkill core framework.

Additionally, each rfkill device is registered in sysfs and emits uevents.

rfkill devices issue uevents (with an action of "change"), with the following
environment variables set:

RFKILL_NAME
RFKILL_STATE
RFKILL_TYPE

The contents of these variables corresponds to the "name", "state" and
"type" sysfs files explained above.


For further details consult Documentation/ABI/stable/sysfs-class-rfkill.
back to top