Revision 4954af9c5ee5bb1b5b9172ddbcbac03ca6e151ea authored by Keno Fischer on 01 September 2023, 19:52:14 UTC, committed by GitHub on 01 September 2023, 19:52:14 UTC
The change in #50429 moves around some dispatch boundaries and pushes
the allocations in the offsetarrays `maximum!` test over the limit. The
implementation of that code is massively type unstable. Somewhat,
ironically, the whole original point of that test was to test that the
implementation was not type-unstable (#28941), so actually opt our
OffsetArrays implementation into the interface that's supposed to
guarantee that.

If this PR is fine here, I'll submit the same upstream to avoid
diverging the implementations too much.

Co-authored-by: Jameson Nash <vtjnash@gmail.com>
1 parent a173010
Raw File
meta.jl
# This file is a part of Julia. License is MIT: https://julialang.org/license

# test meta-expressions that annotate blocks of code

const inlining_on = Base.JLOptions().can_inline != 0

function f(x)
    y = x+5
    z = y*y
    q = z/y
    m = q-3
end

@inline function f_inlined(x)
    y = x+5
    z = y*y
    q = z/y
    m = q-3
end

g(x) = f(2x)
g_inlined(x) = f_inlined(2x)

@test g(3) == g_inlined(3)
@test f(3) == f_inlined(3)

f() = backtrace()
@inline g_inlined() = f()
@noinline g_noinlined() = f()
h_inlined() = g_inlined()
h_noinlined() = g_noinlined()

function foundfunc(bt, funcname)
    for b in bt
        for lkup in StackTraces.lookup(b)
            if lkup.func == funcname
                return true
            end
        end
    end
    false
end
@test foundfunc(h_inlined(), :g_inlined)
@test foundfunc(h_noinlined(), :g_noinlined)

using Base: pushmeta!, popmeta!

macro attach(val, ex)
    esc(_attach(val, ex))
end

_attach(val, ex) = pushmeta!(ex, :test, val)

@attach 42 function dummy()
    false
end

asts = code_lowered(dummy, Tuple{})
@test length(asts) == 1
ast = asts[1]

body = Expr(:block)
body.args = ast.code

@test popmeta!(body, :test) == (true, [42])
@test popmeta!(body, :nonexistent) == (false, [])

# Simple popmeta!() tests
ex1 = quote
    $(Expr(:meta, :foo))
    x*x+1
end
@test popmeta!(ex1, :foo)[1]
@test !popmeta!(ex1, :foo)[1]
@test !popmeta!(ex1, :bar)[1]
@test !(popmeta!(:(x*x+1), :foo)[1])

# Find and pop meta information from general ast locations
multi_meta = quote
    $(Expr(:meta, :foo1))
    y = x
    $(Expr(:meta, :foo2, :foo3))
    begin
        $(Expr(:meta, :foo4, Expr(:foo5, 1, 2)))
    end
    x*x+1
end
@test popmeta!(deepcopy(multi_meta), :foo1) == (true, [])
@test popmeta!(deepcopy(multi_meta), :foo2) == (true, [])
@test popmeta!(deepcopy(multi_meta), :foo3) == (true, [])
@test popmeta!(deepcopy(multi_meta), :foo4) == (true, [])
@test popmeta!(deepcopy(multi_meta), :foo5) == (true, [1,2])
@test popmeta!(deepcopy(multi_meta), :bar)  == (false, [])

# Test that popmeta!() removes meta blocks entirely when they become empty.
for m in [:foo1, :foo2, :foo3, :foo4, :foo5]
    @test popmeta!(multi_meta, m)[1]
end
@test Base.findmeta(multi_meta.args)[1] == 0

# Test that pushmeta! can push across other macros,
# in the case multiple pushmeta!-based macros are combined

@attach 40 @attach 41 @attach 42 dummy_multi() = return nothing

asts = code_lowered(dummy_multi, Tuple{})
@test length(asts) == 1
ast = asts[1]

body = Expr(:block)
body.args = ast.code

@test popmeta!(body, :test) == (true, [40])
@test popmeta!(body, :test) == (true, [41])
@test popmeta!(body, :test) == (true, [42])
@test popmeta!(body, :nonexistent) == (false, [])

# tests to fully cover functions in base/meta.jl
using Base.Meta

@test isexpr(:(1+1),Set([:call]))
@test isexpr(:(1+1),Vector([:call]))
@test isexpr(:(1+1),(:call,))
@test isexpr(1,:call)==false
@test isexpr(:(1+1),:call,3)

let
    fakeline = LineNumberNode(100000,"A")
    # Interop with __LINE__
    @test macroexpand(@__MODULE__, replace_sourceloc!(fakeline, :(@__LINE__))) == fakeline.line
    # replace_sourceloc! should recurse:
    @test replace_sourceloc!(fakeline, :((@a) + 1)).args[2].args[2] == fakeline
    @test replace_sourceloc!(fakeline, :(@a @b)).args[3].args[2] == fakeline
end

ioB = IOBuffer()
show_sexpr(ioB,:(1+1))

show_sexpr(ioB,QuoteNode(1),1)

# test base/expr.jl
baremodule B
    eval = 0
    x = 1
    module M; x = 2; end
    import Base
    Base.@eval x = 3
    Base.@eval M x = 4
end
@test B.x == 3
@test B.M.x == 4

# specialization annotations

function _nospec_some_args(@nospecialize(x), y, @nospecialize z::Int)
end
@test first(methods(_nospec_some_args)).nospecialize == 5
@test first(methods(_nospec_some_args)).sig == Tuple{typeof(_nospec_some_args),Any,Any,Int}
function _nospec_some_args2(x, y, z)
    @nospecialize x y
    return 0
end
@test first(methods(_nospec_some_args2)).nospecialize == 3
function _nospec_with_default(@nospecialize x = 1)
    2x
end
@test collect(methods(_nospec_with_default))[2].nospecialize == 1
@test _nospec_with_default() == 2
@test _nospec_with_default(10) == 20


let oldout = stdout
    ex = Meta.@lower @dump x + y
    local rdout, wrout, out
    try
        rdout, wrout = redirect_stdout()
        out = @async read(rdout, String)

        @test eval(ex) === nothing

        redirect_stdout(oldout)
        close(wrout)

        @test fetch(out) == """
            Expr
              head: Symbol call
              args: Array{Any}((3,))
                1: Symbol +
                2: Symbol x
                3: Symbol y
            """
    finally
        redirect_stdout(oldout)
    end
end

macro is_dollar_expr(ex)
    return Meta.isexpr(ex, :$)
end

module TestExpandModule
macro is_in_def_module()
    return __module__ === @__MODULE__
end
end

let a = 1
    @test @is_dollar_expr $a
    @test !TestExpandModule.@is_in_def_module
    @test @eval TestExpandModule @is_in_def_module

    @test Meta.lower(@__MODULE__, :($a)) === 1
    @test !Meta.lower(@__MODULE__, :(@is_dollar_expr $a))
    @test Meta.@lower @is_dollar_expr $a
    @test Meta.@lower @__MODULE__() @is_dollar_expr $a
    @test !Meta.@lower TestExpandModule.@is_in_def_module
    @test Meta.@lower TestExpandModule @is_in_def_module

    @test macroexpand(@__MODULE__, :($a)) === 1
    @test !macroexpand(@__MODULE__, :(@is_dollar_expr $a))
    @test @macroexpand @is_dollar_expr $a
end

let ex = Meta.parse("@foo"; filename=:bar)
    @test Meta.isexpr(ex, :macrocall)
    arg2 = ex.args[2]
    @test isa(arg2, LineNumberNode) && arg2.file === :bar
end
let ex = Meta.parseatom("@foo", 1, filename=:bar)[1]
    @test Meta.isexpr(ex, :macrocall)
    arg2 = ex.args[2]
    @test isa(arg2, LineNumberNode) && arg2.file === :bar
end
let ex = Meta.parseall("@foo", filename=:bar)
    @test Meta.isexpr(ex, :toplevel)
    arg1 = ex.args[1]
    @test isa(arg1, LineNumberNode) && arg1.file === :bar
    arg2 = ex.args[2]
    @test Meta.isexpr(arg2, :macrocall)
    arg2arg2 = arg2.args[2]
    @test isa(arg2arg2, LineNumberNode) && arg2arg2.file === :bar
end

_lower(m::Module, ex, world::UInt) = ccall(:jl_expand_in_world, Any, (Any, Ref{Module}, Cstring, Cint, Csize_t), ex, m, "none", 0, world)

module TestExpandInWorldModule
macro m() 1 end
wa = Base.get_world_counter()
macro m() 2 end
end

@test _lower(TestExpandInWorldModule, :(@m), TestExpandInWorldModule.wa) == 1

f(::T) where {T} = T
ci = code_lowered(f, Tuple{Int})[1]
@test Meta.partially_inline!(ci.code, [], Tuple{typeof(f),Int}, Any[Int], 0, 0, :propagate) ==
    Any[Core.ReturnNode(QuoteNode(Int))]

g(::Val{x}) where {x} = x ? 1 : 0
ci = code_lowered(g, Tuple{Val{true}})[1]
@test Meta.partially_inline!(ci.code, [], Tuple{typeof(g),Val{true}}, Any[true], 0, 0, :propagate)[1] ==
   Core.GotoIfNot(QuoteNode(true), 3)
@test Meta.partially_inline!(ci.code, [], Tuple{typeof(g),Val{true}}, Any[true], 0, 2, :propagate)[1] ==
   Core.GotoIfNot(QuoteNode(true), 5)

@testset "inlining with isdefined" begin
    isdefined_slot(x) = @isdefined(x)
    ci = code_lowered(isdefined_slot, Tuple{Int})[1]
    @test Meta.partially_inline!(copy(ci.code), [], Tuple{typeof(isdefined_slot), Int},
                                 [], 0, 0, :propagate)[1] == Expr(:isdefined, Core.SlotNumber(2))
    @test Meta.partially_inline!(copy(ci.code), [isdefined_slot, 1], Tuple{typeof(isdefined_slot), Int},
                                 [], 0, 0, :propagate)[1] == true

    isdefined_sparam(::T) where {T} = @isdefined(T)
    ci = code_lowered(isdefined_sparam, Tuple{Int})[1]
    @test Meta.partially_inline!(copy(ci.code), [], Tuple{typeof(isdefined_sparam), Int},
                                 Any[Int], 0, 0, :propagate)[1] == true
    @test Meta.partially_inline!(copy(ci.code), [], Tuple{typeof(isdefined_sparam), Int},
                                 [], 0, 0, :propagate)[1] == Expr(:isdefined, Expr(:static_parameter, 1))

    @eval isdefined_globalref(x) = $(Expr(:isdefined, GlobalRef(Base, :foo)))
    ci = code_lowered(isdefined_globalref, Tuple{Int})[1]
    @test Meta.partially_inline!(copy(ci.code), Any[isdefined_globalref, 1], Tuple{typeof(isdefined_globalref), Int},
                                 [], 0, 0, :propagate)[1] == Expr(:isdefined, GlobalRef(Base, :foo))

end
back to top