Revision 497d2214e5ba58ef55025b9951e7f9cccab760e4 authored by Mike Turquette on 06 January 2014, 05:36:43 UTC, committed by Mike Turquette on 06 January 2014, 05:36:43 UTC
Samsung Clock fixes for 3.13-rc7

* Several patches fixing up incorrectly defined register addresses and
  bitfield offsets that could lead to undefined operation when accessing
  respective registers or bitfields.

 1) clk: exynos5250: fix sysmmu_mfc{l,r} gate clocks

 2a) clk: samsung: exynos5250: Fix ACP gate register offset
 2b) clk: samsung: exynos5250: Add MDMA0 clocks
 2c) ARM: dts: exynos5250: Fix MDMA0 clock number

 3) clk: samsung: exynos4: Correct SRC_MFC register

   All three issues have been present since Exynos5250 and Exynos4 clock
   drivers were added by commits 6e3ad26816b72 ("clk: exynos5250:
   register clocks using common clock framework") and e062b571777f5
   ("clk: exynos4: register clocks using common clock framework")
   respectively.

* Patch to fix automatic disabling of Exynos5250 sysreg clock that could
  cause undefined operation of several peripherals, such as USB, I2C,
  MIPI or display block.

 4) clk: samsung: exynos5250: Add CLK_IGNORE_UNUSED flag for the sysreg
    clock

   Present since Exynos5250 clock drivers was added by commits
   6e3ad26816b72 ("clk: exynos5250: register clocks using common clock
   framework").

* Patch fixing compilation warning in clk-exynos-audss driver when
  CONFIG_PM_SLEEP is disabled.

 5) clk: exynos: File scope reg_save array should depend on PM_SLEEP

   Present since the driver was added by commit 1241ef94ccc3 ("clk:
   samsung: register audio subsystem clocks using common clock
   framework").
2 parent s d6e0a2d + 3fd68c9
Raw File
Kconfig.preempt

choice
	prompt "Preemption Model"
	default PREEMPT_NONE

config PREEMPT_NONE
	bool "No Forced Preemption (Server)"
	help
	  This is the traditional Linux preemption model, geared towards
	  throughput. It will still provide good latencies most of the
	  time, but there are no guarantees and occasional longer delays
	  are possible.

	  Select this option if you are building a kernel for a server or
	  scientific/computation system, or if you want to maximize the
	  raw processing power of the kernel, irrespective of scheduling
	  latencies.

config PREEMPT_VOLUNTARY
	bool "Voluntary Kernel Preemption (Desktop)"
	help
	  This option reduces the latency of the kernel by adding more
	  "explicit preemption points" to the kernel code. These new
	  preemption points have been selected to reduce the maximum
	  latency of rescheduling, providing faster application reactions,
	  at the cost of slightly lower throughput.

	  This allows reaction to interactive events by allowing a
	  low priority process to voluntarily preempt itself even if it
	  is in kernel mode executing a system call. This allows
	  applications to run more 'smoothly' even when the system is
	  under load.

	  Select this if you are building a kernel for a desktop system.

config PREEMPT
	bool "Preemptible Kernel (Low-Latency Desktop)"
	select PREEMPT_COUNT
	select UNINLINE_SPIN_UNLOCK if !ARCH_INLINE_SPIN_UNLOCK
	help
	  This option reduces the latency of the kernel by making
	  all kernel code (that is not executing in a critical section)
	  preemptible.  This allows reaction to interactive events by
	  permitting a low priority process to be preempted involuntarily
	  even if it is in kernel mode executing a system call and would
	  otherwise not be about to reach a natural preemption point.
	  This allows applications to run more 'smoothly' even when the
	  system is under load, at the cost of slightly lower throughput
	  and a slight runtime overhead to kernel code.

	  Select this if you are building a kernel for a desktop or
	  embedded system with latency requirements in the milliseconds
	  range.

endchoice

config PREEMPT_COUNT
       bool
back to top