Revision 499ebb3ab5ea4207950fc95acf102b8f58add1c5 authored by Maysam Yabandeh on 24 June 2017, 21:06:43 UTC, committed by Facebook Github Bot on 24 June 2017, 21:11:29 UTC
Summary:
Throughput: 46k tps in our sysbench settings (filling the details later)

The idea is to have the simplest change that gives us a reasonable boost
in 2PC throughput.

Major design changes:
1. The WAL file internal buffer is not flushed after each write. Instead
it is flushed before critical operations (WAL copy via fs) or when
FlushWAL is called by MySQL. Flushing the WAL buffer is also protected
via mutex_.
2. Use two sequence numbers: last seq, and last seq for write. Last seq
is the last visible sequence number for reads. Last seq for write is the
next sequence number that should be used to write to WAL/memtable. This
allows to have a memtable write be in parallel to WAL writes.
3. BatchGroup is not used for writes. This means that we can have
parallel writers which changes a major assumption in the code base. To
accommodate for that i) allow only 1 WriteImpl that intends to write to
memtable via mem_mutex_--which is fine since in 2PC almost all of the memtable writes
come via group commit phase which is serial anyway, ii) make all the
parts in the code base that assumed to be the only writer (via
EnterUnbatched) to also acquire mem_mutex_, iii) stat updates are
protected via a stat_mutex_.

Note: the first commit has the approach figured out but is not clean.
Submitting the PR anyway to get the early feedback on the approach. If
we are ok with the approach I will go ahead with this updates:
0) Rebase with Yi's pipelining changes
1) Currently batching is disabled by default to make sure that it will be
consistent with all unit tests. Will make this optional via a config.
2) A couple of unit tests are disabled. They need to be updated with the
serial commit of 2PC taken into account.
3) Replacing BatchGroup with mem_mutex_ got a bit ugly as it requires
releasing mutex_ beforehand (the same way EnterUnbatched does). This
needs to be cleaned up.
Closes https://github.com/facebook/rocksdb/pull/2345

Differential Revision: D5210732

Pulled By: maysamyabandeh

fbshipit-source-id: 78653bd95a35cd1e831e555e0e57bdfd695355a4
1 parent 0ac4afb
Raw File
forward_iterator_bench.cc
//  Copyright (c) 2011-present, Facebook, Inc.  All rights reserved.
//  This source code is licensed under the BSD-style license found in the
//  LICENSE file in the root directory of this source tree. An additional grant
//  of patent rights can be found in the PATENTS file in the same directory.
//  This source code is also licensed under the GPLv2 license found in the
//  COPYING file in the root directory of this source tree.

#ifndef __STDC_FORMAT_MACROS
#define __STDC_FORMAT_MACROS
#endif

#if !defined(GFLAGS) || defined(ROCKSDB_LITE)
#include <cstdio>
int main() {
  fprintf(stderr, "Please install gflags to run rocksdb tools\n");
  return 1;
}
#elif defined(OS_MACOSX) || defined(OS_WIN)
// Block forward_iterator_bench under MAC and Windows
int main() { return 0; }
#else
#include <gflags/gflags.h>
#include <semaphore.h>
#include <atomic>
#include <bitset>
#include <chrono>
#include <climits>
#include <condition_variable>
#include <limits>
#include <mutex>
#include <queue>
#include <random>
#include <thread>

#include "rocksdb/cache.h"
#include "rocksdb/db.h"
#include "rocksdb/status.h"
#include "rocksdb/table.h"
#include "port/port.h"
#include "util/testharness.h"

const int MAX_SHARDS = 100000;

DEFINE_int32(writers, 8, "");
DEFINE_int32(readers, 8, "");
DEFINE_int64(rate, 100000, "");
DEFINE_int64(value_size, 300, "");
DEFINE_int64(shards, 1000, "");
DEFINE_int64(memtable_size, 500000000, "");
DEFINE_int64(block_cache_size, 300000000, "");
DEFINE_int64(block_size, 65536, "");
DEFINE_double(runtime, 300.0, "");
DEFINE_bool(cache_only_first, true, "");
DEFINE_bool(iterate_upper_bound, true, "");

struct Stats {
  char pad1[128] __attribute__((__unused__));
  std::atomic<uint64_t> written{0};
  char pad2[128] __attribute__((__unused__));
  std::atomic<uint64_t> read{0};
  std::atomic<uint64_t> cache_misses{0};
  char pad3[128] __attribute__((__unused__));
} stats;

struct Key {
  Key() {}
  Key(uint64_t shard_in, uint64_t seqno_in)
      : shard_be(htobe64(shard_in)), seqno_be(htobe64(seqno_in)) {}

  uint64_t shard() const { return be64toh(shard_be); }
  uint64_t seqno() const { return be64toh(seqno_be); }

 private:
  uint64_t shard_be;
  uint64_t seqno_be;
} __attribute__((__packed__));

struct Reader;
struct Writer;

struct ShardState {
  char pad1[128] __attribute__((__unused__));
  std::atomic<uint64_t> last_written{0};
  Writer* writer;
  Reader* reader;
  char pad2[128] __attribute__((__unused__));
  std::atomic<uint64_t> last_read{0};
  std::unique_ptr<rocksdb::Iterator> it;
  std::unique_ptr<rocksdb::Iterator> it_cacheonly;
  Key upper_bound;
  rocksdb::Slice upper_bound_slice;
  char pad3[128] __attribute__((__unused__));
};

struct Reader {
 public:
  explicit Reader(std::vector<ShardState>* shard_states, rocksdb::DB* db)
      : shard_states_(shard_states), db_(db) {
    sem_init(&sem_, 0, 0);
    thread_ = port::Thread(&Reader::run, this);
  }

  void run() {
    while (1) {
      sem_wait(&sem_);
      if (done_.load()) {
        break;
      }

      uint64_t shard;
      {
        std::lock_guard<std::mutex> guard(queue_mutex_);
        assert(!shards_pending_queue_.empty());
        shard = shards_pending_queue_.front();
        shards_pending_queue_.pop();
        shards_pending_set_.reset(shard);
      }
      readOnceFromShard(shard);
    }
  }

  void readOnceFromShard(uint64_t shard) {
    ShardState& state = (*shard_states_)[shard];
    if (!state.it) {
      // Initialize iterators
      rocksdb::ReadOptions options;
      options.tailing = true;
      if (FLAGS_iterate_upper_bound) {
        state.upper_bound = Key(shard, std::numeric_limits<uint64_t>::max());
        state.upper_bound_slice = rocksdb::Slice(
            (const char*)&state.upper_bound, sizeof(state.upper_bound));
        options.iterate_upper_bound = &state.upper_bound_slice;
      }

      state.it.reset(db_->NewIterator(options));

      if (FLAGS_cache_only_first) {
        options.read_tier = rocksdb::ReadTier::kBlockCacheTier;
        state.it_cacheonly.reset(db_->NewIterator(options));
      }
    }

    const uint64_t upto = state.last_written.load();
    for (rocksdb::Iterator* it : {state.it_cacheonly.get(), state.it.get()}) {
      if (it == nullptr) {
        continue;
      }
      if (state.last_read.load() >= upto) {
        break;
      }
      bool need_seek = true;
      for (uint64_t seq = state.last_read.load() + 1; seq <= upto; ++seq) {
        if (need_seek) {
          Key from(shard, state.last_read.load() + 1);
          it->Seek(rocksdb::Slice((const char*)&from, sizeof(from)));
          need_seek = false;
        } else {
          it->Next();
        }
        if (it->status().IsIncomplete()) {
          ++::stats.cache_misses;
          break;
        }
        assert(it->Valid());
        assert(it->key().size() == sizeof(Key));
        Key key;
        memcpy(&key, it->key().data(), it->key().size());
        // fprintf(stderr, "Expecting (%ld, %ld) read (%ld, %ld)\n",
        //         shard, seq, key.shard(), key.seqno());
        assert(key.shard() == shard);
        assert(key.seqno() == seq);
        state.last_read.store(seq);
        ++::stats.read;
      }
    }
  }

  void onWrite(uint64_t shard) {
    {
      std::lock_guard<std::mutex> guard(queue_mutex_);
      if (!shards_pending_set_.test(shard)) {
        shards_pending_queue_.push(shard);
        shards_pending_set_.set(shard);
        sem_post(&sem_);
      }
    }
  }

  ~Reader() {
    done_.store(true);
    sem_post(&sem_);
    thread_.join();
  }

 private:
  char pad1[128] __attribute__((__unused__));
  std::vector<ShardState>* shard_states_;
  rocksdb::DB* db_;
  rocksdb::port::Thread thread_;
  sem_t sem_;
  std::mutex queue_mutex_;
  std::bitset<MAX_SHARDS + 1> shards_pending_set_;
  std::queue<uint64_t> shards_pending_queue_;
  std::atomic<bool> done_{false};
  char pad2[128] __attribute__((__unused__));
};

struct Writer {
  explicit Writer(std::vector<ShardState>* shard_states, rocksdb::DB* db)
      : shard_states_(shard_states), db_(db) {}

  void start() { thread_ = port::Thread(&Writer::run, this); }

  void run() {
    std::queue<std::chrono::steady_clock::time_point> workq;
    std::chrono::steady_clock::time_point deadline(
        std::chrono::steady_clock::now() +
        std::chrono::nanoseconds((uint64_t)(1000000000 * FLAGS_runtime)));
    std::vector<uint64_t> my_shards;
    for (int i = 1; i <= FLAGS_shards; ++i) {
      if ((*shard_states_)[i].writer == this) {
        my_shards.push_back(i);
      }
    }

    std::mt19937 rng{std::random_device()()};
    std::uniform_int_distribution<int> shard_dist(
        0, static_cast<int>(my_shards.size()) - 1);
    std::string value(FLAGS_value_size, '*');

    while (1) {
      auto now = std::chrono::steady_clock::now();
      if (FLAGS_runtime >= 0 && now >= deadline) {
        break;
      }
      if (workq.empty()) {
        for (int i = 0; i < FLAGS_rate; i += FLAGS_writers) {
          std::chrono::nanoseconds offset(1000000000LL * i / FLAGS_rate);
          workq.push(now + offset);
        }
      }
      while (!workq.empty() && workq.front() < now) {
        workq.pop();
        uint64_t shard = my_shards[shard_dist(rng)];
        ShardState& state = (*shard_states_)[shard];
        uint64_t seqno = state.last_written.load() + 1;
        Key key(shard, seqno);
        // fprintf(stderr, "Writing (%ld, %ld)\n", shard, seqno);
        rocksdb::Status status =
            db_->Put(rocksdb::WriteOptions(),
                     rocksdb::Slice((const char*)&key, sizeof(key)),
                     rocksdb::Slice(value));
        assert(status.ok());
        state.last_written.store(seqno);
        state.reader->onWrite(shard);
        ++::stats.written;
      }
      std::this_thread::sleep_for(std::chrono::milliseconds(1));
    }
    // fprintf(stderr, "Writer done\n");
  }

  ~Writer() { thread_.join(); }

 private:
  char pad1[128] __attribute__((__unused__));
  std::vector<ShardState>* shard_states_;
  rocksdb::DB* db_;
  rocksdb::port::Thread thread_;
  char pad2[128] __attribute__((__unused__));
};

struct StatsThread {
  explicit StatsThread(rocksdb::DB* db)
      : db_(db), thread_(&StatsThread::run, this) {}

  void run() {
    //    using namespace std::chrono;
    auto tstart = std::chrono::steady_clock::now(), tlast = tstart;
    uint64_t wlast = 0, rlast = 0;
    while (!done_.load()) {
      {
        std::unique_lock<std::mutex> lock(cvm_);
        cv_.wait_for(lock, std::chrono::seconds(1));
      }
      auto now = std::chrono::steady_clock::now();
      double elapsed =
          std::chrono::duration_cast<std::chrono::duration<double> >(
              now - tlast).count();
      uint64_t w = ::stats.written.load();
      uint64_t r = ::stats.read.load();
      fprintf(stderr,
              "%s elapsed %4lds | written %10ld | w/s %10.0f | read %10ld | "
              "r/s %10.0f | cache misses %10ld\n",
              db_->GetEnv()->TimeToString(time(nullptr)).c_str(),
              std::chrono::duration_cast<std::chrono::seconds>(now - tstart)
                  .count(),
              w, (w - wlast) / elapsed, r, (r - rlast) / elapsed,
              ::stats.cache_misses.load());
      wlast = w;
      rlast = r;
      tlast = now;
    }
  }

  ~StatsThread() {
    {
      std::lock_guard<std::mutex> guard(cvm_);
      done_.store(true);
    }
    cv_.notify_all();
    thread_.join();
  }

 private:
  rocksdb::DB* db_;
  std::mutex cvm_;
  std::condition_variable cv_;
  rocksdb::port::Thread thread_;
  std::atomic<bool> done_{false};
};

int main(int argc, char** argv) {
  GFLAGS::ParseCommandLineFlags(&argc, &argv, true);

  std::mt19937 rng{std::random_device()()};
  rocksdb::Status status;
  std::string path = rocksdb::test::TmpDir() + "/forward_iterator_test";
  fprintf(stderr, "db path is %s\n", path.c_str());
  rocksdb::Options options;
  options.create_if_missing = true;
  options.compression = rocksdb::CompressionType::kNoCompression;
  options.compaction_style = rocksdb::CompactionStyle::kCompactionStyleNone;
  options.level0_slowdown_writes_trigger = 99999;
  options.level0_stop_writes_trigger = 99999;
  options.use_direct_io_for_flush_and_compaction = true;
  options.write_buffer_size = FLAGS_memtable_size;
  rocksdb::BlockBasedTableOptions table_options;
  table_options.block_cache = rocksdb::NewLRUCache(FLAGS_block_cache_size);
  table_options.block_size = FLAGS_block_size;
  options.table_factory.reset(
      rocksdb::NewBlockBasedTableFactory(table_options));

  status = rocksdb::DestroyDB(path, options);
  assert(status.ok());
  rocksdb::DB* db_raw;
  status = rocksdb::DB::Open(options, path, &db_raw);
  assert(status.ok());
  std::unique_ptr<rocksdb::DB> db(db_raw);

  std::vector<ShardState> shard_states(FLAGS_shards + 1);
  std::deque<Reader> readers;
  while (static_cast<int>(readers.size()) < FLAGS_readers) {
    readers.emplace_back(&shard_states, db_raw);
  }
  std::deque<Writer> writers;
  while (static_cast<int>(writers.size()) < FLAGS_writers) {
    writers.emplace_back(&shard_states, db_raw);
  }

  // Each shard gets a random reader and random writer assigned to it
  for (int i = 1; i <= FLAGS_shards; ++i) {
    std::uniform_int_distribution<int> reader_dist(0, FLAGS_readers - 1);
    std::uniform_int_distribution<int> writer_dist(0, FLAGS_writers - 1);
    shard_states[i].reader = &readers[reader_dist(rng)];
    shard_states[i].writer = &writers[writer_dist(rng)];
  }

  StatsThread stats_thread(db_raw);
  for (Writer& w : writers) {
    w.start();
  }

  writers.clear();
  readers.clear();
}
#endif  // !defined(GFLAGS) || defined(ROCKSDB_LITE)
back to top