https://github.com/tansey/smoothfdr
Revision 49cb69c5a18fdb262964fbfeb47ab2099eb32c5c authored by Wesley Tansey on 03 May 2018, 19:46:59 UTC, committed by Wesley Tansey on 03 May 2018, 19:46:59 UTC
2 parent s b713c52 + 63bb329
Raw File
Tip revision: 49cb69c5a18fdb262964fbfeb47ab2099eb32c5c authored by Wesley Tansey on 03 May 2018, 19:46:59 UTC
Merged
Tip revision: 49cb69c
stoc1.cpp
/*************************** stoc1.cpp **********************************
* Author:        Agner Fog
* Date created:  2002-01-04
* Last modified: 2008-11-30
* Project:       stocc.zip
* Source URL:    www.agner.org/random
*
* Description:
* Non-uniform random number generator functions.
*
* This file contains source code for the class StochasticLib1 defined in stocc.h.
*
* Documentation:
* ==============
* The file stocc.h contains class definitions.
* The file stocc.htm contains further instructions.
* The file distrib.pdf contains definitions of the statistic distributions.
* The file sampmet.pdf contains theoretical descriptions of the methods used
* for sampling from these distributions.
* The file ran-instructions.pdf contains general instructions.
*
* Copyright 2002-2008 by Agner Fog. 
* GNU General Public License http://www.gnu.org/licenses/gpl.html
*****************************************************************************/

#include "stocc.h"     // class definition


/***********************************************************************
constants
***********************************************************************/
const double SHAT1 = 2.943035529371538573;    // 8/e
const double SHAT2 = 0.8989161620588987408;   // 3-sqrt(12/e)


/***********************************************************************
Log factorial function
***********************************************************************/
double LnFac(int32_t n) {
   // log factorial function. gives natural logarithm of n!

   // define constants
   static const double                 // coefficients in Stirling approximation     
      C0 =  0.918938533204672722,      // ln(sqrt(2*pi))
      C1 =  1./12., 
      C3 = -1./360.;
   // C5 =  1./1260.,                  // use r^5 term if FAK_LEN < 50
   // C7 = -1./1680.;                  // use r^7 term if FAK_LEN < 20
   // static variables
   static double fac_table[FAK_LEN];   // table of ln(n!):
   static int initialized = 0;         // remember if fac_table has been initialized

   if (n < FAK_LEN) {
      if (n <= 1) {
         if (n < 0) FatalError("Parameter negative in LnFac function");  
         return 0;
      }
      if (!initialized) {              // first time. Must initialize table
         // make table of ln(n!)
         double sum = fac_table[0] = 0.;
         for (int i=1; i<FAK_LEN; i++) {
            sum += log(double(i));
            fac_table[i] = sum;
         }
         initialized = 1;
      }
      return fac_table[n];
   }
   // not found in table. use Stirling approximation
   double  n1, r;
   n1 = n;  r  = 1. / n1;
   return (n1 + 0.5)*log(n1) - n1 + C0 + r*(C1 + r*r*C3);
}


/***********************************************************************
Constructor
***********************************************************************/
StochasticLib1::StochasticLib1 (int seed)
: STOC_BASE(seed) {
   // Initialize variables for various distributions
   normal_x2_valid = 0;
   hyp_n_last = hyp_m_last = hyp_N_last = -1; // Last values of hypergeometric parameters
   pois_L_last = -1.;                         // Last values of Poisson parameters
   bino_n_last = -1;  bino_p_last = -1.;      // Last values of binomial parameters
}


/***********************************************************************
Hypergeometric distribution
***********************************************************************/
int32_t StochasticLib1::Hypergeometric (int32_t n, int32_t m, int32_t N) {
   /*
   This function generates a random variate with the hypergeometric
   distribution. This is the distribution you get when drawing balls without 
   replacement from an urn with two colors. n is the number of balls you take,
   m is the number of red balls in the urn, N is the total number of balls in 
   the urn, and the return value is the number of red balls you get.

   This function uses inversion by chop-down search from the mode when
   parameters are small, and the ratio-of-uniforms method when the former
   method would be too slow or would give overflow.
   */   

   int32_t fak, addd;                    // used for undoing transformations
   int32_t x;                            // result

   // check if parameters are valid
   if (n > N || m > N || n < 0 || m < 0) {
      FatalError("Parameter out of range in hypergeometric function");}

   // symmetry transformations
   fak = 1;  addd = 0;
   if (m > N/2) {
      // invert m
      m = N - m;
      fak = -1;  addd = n;
   }    
   if (n > N/2) {
      // invert n
      n = N - n;
      addd += fak * m;  fak = - fak;
   }    
   if (n > m) {
      // swap n and m
      x = n;  n = m;  m = x;
   }    
   // cases with only one possible result end here
   if (n == 0)  return addd;

   //------------------------------------------------------------------
   //                 choose method
   //------------------------------------------------------------------
   if (N > 680 || n > 70) {
      // use ratio-of-uniforms method
      x = HypRatioOfUnifoms (n, m, N);
   }
   else {
      // inversion method, using chop-down search from mode
      x = HypInversionMod (n, m, N);
   }
   // undo symmetry transformations  
   return x * fak + addd;
}


/***********************************************************************
Subfunctions used by hypergeometric
***********************************************************************/

int32_t StochasticLib1::HypInversionMod (int32_t n, int32_t m, int32_t N) {
   /* 
   Subfunction for Hypergeometric distribution. Assumes 0 <= n <= m <= N/2.
   Overflow protection is needed when N > 680 or n > 75.

   Hypergeometric distribution by inversion method, using down-up 
   search starting at the mode using the chop-down technique.

   This method is faster than the rejection method when the variance is low.
   */

   // Sampling 
   int32_t       I;                    // Loop counter
   int32_t       L = N - m - n;        // Parameter
   double        modef;                // mode, float
   double        Mp, np;               // m + 1, n + 1
   double        p;                    // temporary
   double        U;                    // uniform random
   double        c, d;                 // factors in iteration
   double        divisor;              // divisor, eliminated by scaling
   double        k1, k2;               // float version of loop counter
   double        L1 = L;               // float version of L

   Mp = (double)(m + 1);
   np = (double)(n + 1);

   if (N != hyp_N_last || m != hyp_m_last || n != hyp_n_last) {
      // set-up when parameters have changed
      hyp_N_last = N;  hyp_m_last = m;  hyp_n_last = n;

      p  = Mp / (N + 2.);
      modef = np * p;                       // mode, real
      hyp_mode = (int32_t)modef;            // mode, integer
      if (hyp_mode == modef && p == 0.5) {   
         hyp_mp = hyp_mode--;
      }
      else {
         hyp_mp = hyp_mode + 1;
      }
      // mode probability, using log factorial function
      // (may read directly from fac_table if N < FAK_LEN)
      hyp_fm = exp(LnFac(N-m) - LnFac(L+hyp_mode) - LnFac(n-hyp_mode)
         + LnFac(m)   - LnFac(m-hyp_mode) - LnFac(hyp_mode)
         - LnFac(N)   + LnFac(N-n)      + LnFac(n)        );

      // safety bound - guarantees at least 17 significant decimal digits
      // bound = min(n, (int32_t)(modef + k*c'))
      hyp_bound = (int32_t)(modef + 11. * sqrt(modef * (1.-p) * (1.-n/(double)N)+1.));
      if (hyp_bound > n) hyp_bound = n;
   }

   // loop until accepted
   while(1) {
      U = Random();                    // uniform random number to be converted

      // start chop-down search at mode
      if ((U -= hyp_fm) <= 0.) return(hyp_mode);
      c = d = hyp_fm;

      // alternating down- and upward search from the mode
      k1 = hyp_mp - 1;  k2 = hyp_mode + 1;
      for (I = 1; I <= hyp_mode; I++, k1--, k2++) {
         // Downward search from k1 = hyp_mp - 1
         divisor = (np - k1)*(Mp - k1);
         // Instead of dividing c with divisor, we multiply U and d because 
         // multiplication is faster. This will give overflow if N > 800
         U *= divisor;  d *= divisor;
         c *= k1 * (L1 + k1);
         if ((U -= c) <= 0.)  return(hyp_mp - I - 1); // = k1 - 1

         // Upward search from k2 = hyp_mode + 1
         divisor = k2 * (L1 + k2);
         // re-scale parameters to avoid time-consuming division
         U *= divisor;  c *= divisor; 
         d *= (np - k2) * (Mp - k2);
         if ((U -= d) <= 0.)  return(hyp_mode + I);  // = k2
         // Values of n > 75 or N > 680 may give overflow if you leave out this..
         // overflow protection
         // if (U > 1.E100) {U *= 1.E-100; c *= 1.E-100; d *= 1.E-100;}
      }

      // Upward search from k2 = 2*mode + 1 to bound
      for (k2 = I = hyp_mp + hyp_mode; I <= hyp_bound; I++, k2++) {
         divisor = k2 * (L1 + k2);
         U *= divisor;
         d *= (np - k2) * (Mp - k2);
         if ((U -= d) <= 0.)  return(I);
         // more overflow protection
         // if (U > 1.E100) {U *= 1.E-100; d *= 1.E-100;}
      }
   }
}


int32_t StochasticLib1::HypRatioOfUnifoms (int32_t n, int32_t m, int32_t N) {
   /*
   Subfunction for Hypergeometric distribution using the ratio-of-uniforms
   rejection method.

   This code is valid for 0 < n <= m <= N/2.

   The computation time hardly depends on the parameters, except that it matters
   a lot whether parameters are within the range where the LnFac function is
   tabulated.

   Reference: E. Stadlober: "The ratio of uniforms approach for generating
   discrete random variates". Journal of Computational and Applied Mathematics,
   vol. 31, no. 1, 1990, pp. 181-189.
   */
   int32_t L;                          // N-m-n
   int32_t mode;                       // mode
   int32_t k;                          // integer sample
   double x;                           // real sample
   double rNN;                         // 1/(N*(N+2))
   double my;                          // mean
   double var;                         // variance
   double u;                           // uniform random
   double lf;                          // ln(f(x))

   L = N - m - n;
   if (hyp_N_last != N || hyp_m_last != m || hyp_n_last != n) {
      hyp_N_last = N;  hyp_m_last = m;  hyp_n_last = n;         // Set-up
      rNN = 1. / ((double)N*(N+2));                             // make two divisions in one
      my = (double)n * m * rNN * (N+2);                         // mean = n*m/N
      mode = (int32_t)(double(n+1) * double(m+1) * rNN * N);    // mode = floor((n+1)*(m+1)/(N+2))
      var = (double)n * m * (N-m) * (N-n) / ((double)N*N*(N-1));// variance
      hyp_h = sqrt(SHAT1 * (var+0.5)) + SHAT2;                  // hat width
      hyp_a = my + 0.5;                                         // hat center
      hyp_fm = fc_lnpk(mode, L, m, n);                          // maximum
      hyp_bound = (int32_t)(hyp_a + 4.0 * hyp_h);               // safety-bound
      if (hyp_bound > n) hyp_bound = n;
   }    
   while(1) {
      u = Random();                              // uniform random number
      if (u == 0) continue;                      // avoid division by 0
      x = hyp_a + hyp_h * (Random()-0.5) / u;    // generate hat distribution
      if (x < 0. || x > 2E9) continue;           // reject, avoid overflow
      k = (int32_t)x;
      if (k > hyp_bound) continue;               // reject if outside range
      lf = hyp_fm - fc_lnpk(k,L,m,n);            // ln(f(k))
      if (u * (4.0 - u) - 3.0 <= lf) break;      // lower squeeze accept
      if (u * (u-lf) > 1.0) continue;            // upper squeeze reject
      if (2.0 * log(u) <= lf) break;             // final acceptance
   }
   return k;
}


double StochasticLib1::fc_lnpk(int32_t k, int32_t L, int32_t m, int32_t n) {
   // subfunction used by hypergeometric and Fisher's noncentral hypergeometric distribution
   return(LnFac(k) + LnFac(m - k) + LnFac(n - k) + LnFac(L + k));
}


#ifndef R_BUILD          // Not needed if making R interface

/***********************************************************************
Multivariate hypergeometric distribution
***********************************************************************/
void StochasticLib1::MultiHypergeometric (int32_t * destination, int32_t * source, int32_t n, int colors) {
   /*
   This function generates a vector of random variates, each with the
   hypergeometric distribution.

   The multivariate hypergeometric distribution is the distribution you 
   get when drawing balls from an urn with more than two colors, without
   replacement.

   Parameters:
   destination:    An output array to receive the number of balls of each 
   color. Must have space for at least 'colors' elements.
   source:         An input array containing the number of balls of each 
   color in the urn. Must have 'colors' elements.
   All elements must be non-negative.
   n:              The number of balls drawn from the urn.
   Can't exceed the total number of balls in the urn.
   colors:         The number of possible colors. 
   */
   int32_t sum, x, y;
   int i;
   if (n < 0 || colors < 0) FatalError("Parameter negative in multihypergeo function");
   if (colors == 0) return;

   // compute total number of balls
   for (i=0, sum=0; i<colors; i++) { 
      y = source[i];
      if (y < 0) FatalError("Parameter negative in multihypergeo function");
      sum += y;
   }
   if (n > sum) FatalError("n > sum in multihypergeo function");

   for (i=0; i<colors-1; i++) { 
      // generate output by calling hypergeometric colors-1 times
      y = source[i];
      x = Hypergeometric(n, y, sum);
      n -= x; sum -= y;
      destination[i] = x;
   }
   // get the last one
   destination[i] = n;
}


/***********************************************************************
Poisson distribution
***********************************************************************/
int32_t StochasticLib1::Poisson (double L) {
   /*
   This function generates a random variate with the poisson distribution.

   Uses inversion by chop-down method for L < 17, and ratio-of-uniforms
   method for L >= 17.

   For L < 1.E-6 numerical inaccuracy is avoided by direct calculation.
   */

   //------------------------------------------------------------------
   //                 choose method
   //------------------------------------------------------------------
   if (L < 17) {
      if (L < 1.E-6) {
         if (L == 0) return 0;
         if (L < 0) FatalError("Parameter negative in poisson function");

         //--------------------------------------------------------------
         // calculate probabilities
         //--------------------------------------------------------------
         // For extremely small L we calculate the probabilities of x = 1
         // and x = 2 (ignoring higher x). The reason for using this 
         // method is to prevent numerical inaccuracies in other methods.
         //--------------------------------------------------------------
         return PoissonLow(L);
      }    
      else {
         //--------------------------------------------------------------
         // inversion method
         //--------------------------------------------------------------
         // The computation time for this method grows with L.
         // Gives overflow for L > 80
         //--------------------------------------------------------------
         return PoissonInver(L);
      }
   }      
   else {
      if (L > 2.E9) FatalError("Parameter too big in poisson function");

      //----------------------------------------------------------------
      // ratio-of-uniforms method
      //----------------------------------------------------------------
      // The computation time for this method does not depend on L.
      // Use where other methods would be slower.
      //----------------------------------------------------------------
      return PoissonRatioUniforms(L);
   }
}


/***********************************************************************
Subfunctions used by poisson
***********************************************************************/
int32_t StochasticLib1::PoissonLow(double L) {
   /*
   This subfunction generates a random variate with the poisson 
   distribution for extremely low values of L.

   The method is a simple calculation of the probabilities of x = 1
   and x = 2. Higher values are ignored.

   The reason for using this method is to avoid the numerical inaccuracies 
   in other methods.
   */   
   double d, r;
   d = sqrt(L);
   if (Random() >= d) return 0;
   r = Random() * d;
   if (r > L * (1.-L)) return 0;
   if (r > 0.5 * L*L * (1.-L)) return 1;
   return 2;
}


int32_t StochasticLib1::PoissonInver(double L) {
   /*
   This subfunction generates a random variate with the poisson 
   distribution using inversion by the chop down method (PIN).

   Execution time grows with L. Gives overflow for L > 80.

   The value of bound must be adjusted to the maximal value of L.
   */   
   const int bound = 130;              // safety bound. Must be > L + 8*sqrt(L).
   double r;                           // uniform random number
   double f;                           // function value
   int32_t x;                          // return value

   if (L != pois_L_last) {             // set up
      pois_L_last = L;
      pois_f0 = exp(-L);               // f(0) = probability of x=0
   }
   while (1) {  
      r = Random();  x = 0;  f = pois_f0;
      do {                             // recursive calculation: f(x) = f(x-1) * L / x
         r -= f;
         if (r <= 0) return x;
         x++;
         f *= L;
         r *= x;                       // instead of f /= x
      }
      while (x <= bound);
   }
}  


int32_t StochasticLib1::PoissonRatioUniforms(double L) {
   /*
   This subfunction generates a random variate with the poisson 
   distribution using the ratio-of-uniforms rejection method (PRUAt).

   Execution time does not depend on L, except that it matters whether L
   is within the range where ln(n!) is tabulated.

   Reference: E. Stadlober: "The ratio of uniforms approach for generating
   discrete random variates". Journal of Computational and Applied Mathematics,
   vol. 31, no. 1, 1990, pp. 181-189.
   */
   double u;                                          // uniform random
   double lf;                                         // ln(f(x))
   double x;                                          // real sample
   int32_t k;                                         // integer sample

   if (pois_L_last != L) {
      pois_L_last = L;                                // Set-up
      pois_a = L + 0.5;                               // hat center
      int32_t mode = (int32_t)L;                      // mode
      pois_g  = log(L);
      pois_f0 = mode * pois_g - LnFac(mode);          // value at mode
      pois_h = sqrt(SHAT1 * (L+0.5)) + SHAT2;         // hat width
      pois_bound = (int32_t)(pois_a + 6.0 * pois_h);  // safety-bound
   }
   while(1) {
      u = Random();
      if (u == 0) continue;                           // avoid division by 0
      x = pois_a + pois_h * (Random() - 0.5) / u;
      if (x < 0 || x >= pois_bound) continue;         // reject if outside valid range
      k = (int32_t)(x);
      lf = k * pois_g - LnFac(k) - pois_f0;
      if (lf >= u * (4.0 - u) - 3.0) break;           // quick acceptance
      if (u * (u - lf) > 1.0) continue;               // quick rejection
      if (2.0 * log(u) <= lf) break;                  // final acceptance
   }
   return k;
}


/***********************************************************************
Binomial distribution
***********************************************************************/
int32_t StochasticLib1::Binomial (int32_t n, double p) {
   /*
   This function generates a random variate with the binomial distribution.

   Uses inversion by chop-down method for n*p < 35, and ratio-of-uniforms
   method for n*p >= 35.

   For n*p < 1.E-6 numerical inaccuracy is avoided by poisson approximation.
   */
   int inv = 0;                        // invert
   int32_t x;                          // result
   double np = n * p;

   if (p > 0.5) {                      // faster calculation by inversion
      p = 1. - p;  inv = 1;
   }
   if (n <= 0 || p <= 0) {
      if (n == 0 || p == 0) {
         return inv * n;  // only one possible result
      }
      // error exit
      FatalError("Parameter out of range in binomial function"); 
   }

   //------------------------------------------------------------------
   //                 choose method
   //------------------------------------------------------------------
   if (np < 35.) {
      if (np < 1.E-6) {
         // Poisson approximation for extremely low np
         x = PoissonLow(np);
      }
      else {
         // inversion method, using chop-down search from 0
         x = BinomialInver(n, p);
      }
   }  
   else {
      // ratio of uniforms method
      x = BinomialRatioOfUniforms(n, p);
   }
   if (inv) {
      x = n - x;      // undo inversion
   }
   return x;
}


/***********************************************************************
Subfunctions used by binomial
***********************************************************************/

int32_t StochasticLib1::BinomialInver (int32_t n, double p) {
   /* 
   Subfunction for Binomial distribution. Assumes p < 0.5.

   Uses inversion method by search starting at 0.

   Gives overflow for n*p > 60.

   This method is fast when n*p is low. 
   */   
   double f0, f, q; 
   int32_t bound;
   double pn, r, rc; 
   int32_t x, n1, i;

   // f(0) = probability of x=0 is (1-p)^n
   // fast calculation of (1-p)^n
   f0 = 1.;  pn = 1.-p;  n1 = n;
   while (n1) {
      if (n1 & 1) f0 *= pn;
      pn *= pn;  n1 >>= 1;
   }
   // calculate safety bound
   rc = (n + 1) * p;
   bound = (int32_t)(rc + 11.0*(sqrt(rc) + 1.0));
   if (bound > n) bound = n; 
   q = p / (1. - p);

   while (1) {
      r = Random();
      // recursive calculation: f(x) = f(x-1) * (n-x+1)/x*p/(1-p)
      f = f0;  x = 0;  i = n;
      do {
         r -= f;
         if (r <= 0) return x;
         x++;
         f *= q * i;
         r *= x;       // it is faster to multiply r by x than dividing f by x
         i--;
      }
      while (x <= bound);
   }
}


int32_t StochasticLib1::BinomialRatioOfUniforms (int32_t n, double p) {
   /* 
   Subfunction for Binomial distribution. Assumes p < 0.5.

   Uses the Ratio-of-Uniforms rejection method.

   The computation time hardly depends on the parameters, except that it matters
   a lot whether parameters are within the range where the LnFac function is 
   tabulated.

   Reference: E. Stadlober: "The ratio of uniforms approach for generating
   discrete random variates". Journal of Computational and Applied Mathematics,
   vol. 31, no. 1, 1990, pp. 181-189.
   */   
   double u;                           // uniform random
   double q1;                          // 1-p
   double np;                          // n*p
   double var;                         // variance
   double lf;                          // ln(f(x))
   double x;                           // real sample
   int32_t k;                          // integer sample

   if(bino_n_last != n || bino_p_last != p) {    // Set_up
      bino_n_last = n;
      bino_p_last = p;
      q1 = 1.0 - p;
      np = n * p;
      bino_mode = (int32_t)(np + p);             // mode
      bino_a = np + 0.5;                         // hat center
      bino_r1 = log(p / q1);
      bino_g = LnFac(bino_mode) + LnFac(n-bino_mode);
      var = np * q1;                             // variance
      bino_h = sqrt(SHAT1 * (var+0.5)) + SHAT2;  // hat width
      bino_bound = (int32_t)(bino_a + 6.0 * bino_h);// safety-bound
      if (bino_bound > n) bino_bound = n;        // safety-bound
   }

   while (1) {                                   // rejection loop
      u = Random();
      if (u == 0) continue;                      // avoid division by 0
      x = bino_a + bino_h * (Random() - 0.5) / u;
      if (x < 0. || x > bino_bound) continue;    // reject, avoid overflow
      k = (int32_t)x;                            // truncate
      lf = (k-bino_mode)*bino_r1+bino_g-LnFac(k)-LnFac(n-k);// ln(f(k))
      if (u * (4.0 - u) - 3.0 <= lf) break;      // lower squeeze accept
      if (u * (u - lf) > 1.0) continue;          // upper squeeze reject
      if (2.0 * log(u) <= lf) break;             // final acceptance
   }
   return k;
}


/***********************************************************************
Multinomial distribution
***********************************************************************/
void StochasticLib1::Multinomial (int32_t * destination, double *source, int32_t n, int colors) {
   /*
   This function generates a vector of random variates, each with the
   binomial distribution.

   The multinomial distribution is the distribution you get when drawing
   balls from an urn with more than two colors, with replacement.

   Parameters:
   destination:    An output array to receive the number of balls of each 
   color. Must have space for at least 'colors' elements.
   source:         An input array containing the probability or fraction 
   of each color in the urn. Must have 'colors' elements.
   All elements must be non-negative. The sum doesn't have
   to be 1, but the sum must be positive.
   n:              The number of balls drawn from the urn.                   
   colors:         The number of possible colors. 
   */
   double s, sum;
   int32_t x;
   int i;
   if (n < 0 || colors < 0) FatalError("Parameter negative in multinomial function");
   if (colors == 0) return;

   // compute sum of probabilities
   for (i=0, sum=0; i<colors; i++) { 
      s = source[i];
      if (s < 0) FatalError("Parameter negative in multinomial function");
      sum += s;
   }
   if (sum == 0 && n > 0) FatalError("Zero sum in multinomial function");

   for (i=0; i<colors-1; i++) { 
      // generate output by calling binomial (colors-1) times
      s = source[i];
      if (sum <= s) {
         // this fixes two problems:
         // 1. prevent division by 0 when sum = 0
         // 2. prevent s/sum getting bigger than 1 in case of rounding errors
         x = n;
      }
      else {    
         x = Binomial(n, s/sum);
      }
      n -= x; sum -= s;
      destination[i] = x;
   }
   // get the last one
   destination[i] = n;
}
void StochasticLib1::Multinomial (int32_t * destination, vector<double> source, int32_t n, int colors) {
	/*
	 This function generates a vector of random variates, each with the
	 binomial distribution.
	 
	 The multinomial distribution is the distribution you get when drawing
	 balls from an urn with more than two colors, with replacement.
	 
	 Parameters:
	 destination:    An output array to receive the number of balls of each 
	 color. Must have space for at least 'colors' elements.
	 source:         An input array containing the probability or fraction 
	 of each color in the urn. Must have 'colors' elements.
	 All elements must be non-negative. The sum doesn't have
	 to be 1, but the sum must be positive.
	 n:              The number of balls drawn from the urn.                   
	 colors:         The number of possible colors. 
	 */
	double s, sum;
	int32_t x;
	int i;
	if (n < 0 || colors < 0) FatalError("Parameter negative in multinomial function");
	if (colors == 0) return;
	
	// compute sum of probabilities
	for (i=0, sum=0; i<colors; i++) { 
		s = source[i];
		if (s < 0) FatalError("Parameter negative in multinomial function");
		sum += s;
	}
	if (sum == 0 && n > 0) FatalError("Zero sum in multinomial function");
	
	for (i=0; i<colors-1; i++) { 
		// generate output by calling binomial (colors-1) times
		s = source[i];
		if (sum <= s) {
			// this fixes two problems:
			// 1. prevent division by 0 when sum = 0
			// 2. prevent s/sum getting bigger than 1 in case of rounding errors
			x = n;
		}
		else {    
			x = Binomial(n, s/sum);
		}
		n -= x; sum -= s;
		destination[i] = x;
	}
	// get the last one
	destination[i] = n;
}

void StochasticLib1::Multinomial (int32_t * destination, int32_t * source, int32_t n, int colors) {
   // same as above, with integer source
   int32_t x, p, sum;
   int i;
   if (n < 0 || colors < 0) FatalError("Parameter negative in multinomial function");
   if (colors == 0) return;

   // compute sum of probabilities
   for (i=0, sum=0; i<colors; i++) { 
      p = source[i];
      if (p < 0) FatalError("Parameter negative in multinomial function");
      sum += p;
   }
   if (sum == 0 && n > 0) FatalError("Zero sum in multinomial function");

   for (i=0; i<colors-1; i++) { 
      // generate output by calling binomial (colors-1) times
      if (sum == 0) {
         destination[i] = 0; continue;
      }
      p = source[i];
      x = Binomial(n, (double)p/sum);
      n -= x; sum -= p;
      destination[i] = x;
   }
   // get the last one
   destination[i] = n;
}


/***********************************************************************
Normal distribution
***********************************************************************/

double StochasticLib1::Normal(double m, double s) {
   // normal distribution with mean m and standard deviation s
   double normal_x1;                   // first random coordinate (normal_x2 is member of class)
   double w;                           // radius
   if (normal_x2_valid) {              // we have a valid result from last call
      normal_x2_valid = 0;
      return normal_x2 * s + m;
   }    
   // make two normally distributed variates by Box-Muller transformation
   do {
      normal_x1 = 2. * Random() - 1.;
      normal_x2 = 2. * Random() - 1.;
      w = normal_x1*normal_x1 + normal_x2*normal_x2;
   }
   while (w >= 1. || w < 1E-30);
   w = sqrt(log(w)*(-2./w));
   normal_x1 *= w;  normal_x2 *= w;    // normal_x1 and normal_x2 are independent normally distributed variates
   normal_x2_valid = 1;                // save normal_x2 for next call
   return normal_x1 * s + m;
}

double StochasticLib1::NormalTrunc(double m, double s, double limit) {
   // Truncated normal distribution
   // The tails are cut off so that the output
   // is in the interval from (m-limit) to (m+limit)
   if (limit < s) FatalError("limit out of range in NormalTrunc function");
   double x;
   do {
      x = Normal(0., s);
   } while (fabs(x) > limit); // reject if beyond limit
   return x + m;
}


/***********************************************************************
Bernoulli distribution
***********************************************************************/
int StochasticLib1::Bernoulli(double p) {
   // Bernoulli distribution with parameter p. This function returns 
   // 0 or 1 with probability (1-p) and p, respectively.
   if (p < 0 || p > 1) FatalError("Parameter out of range in Bernoulli function");
   return Random() < p;
}


/***********************************************************************
Shuffle function
***********************************************************************/
void StochasticLib1::Shuffle(int * list, int min, int n) {
   /*
   This function makes a list of the n numbers from min to min+n-1
   in random order.

   The parameter 'list' must be an array with at least n elements.
   The array index goes from 0 to n-1.

   If you want to shuffle something else than integers then use the 
   integers in list as an index into a table of the items you want to shuffle.
   */

   int i, j, swap;
   // put numbers from min to min+n-1 into list
   for (i=0, j=min; i<n; i++, j++) list[i] = j;
   // shuffle list
   for (i=0; i<n-1; i++) {
      // item number i has n-i numbers to choose between
      j = IRandom(i,n-1);
      // swap items i and j
      swap = list[j];  list[j] = list[i];  list[i] = swap;
   }
}

#endif  // ifndef R_BUILD
back to top