Revision 4cd9973f9ff69e37dd0ba2bd6e6423f8179c329a authored by Junxiao Bi on 26 June 2020, 03:29:30 UTC, committed by Linus Torvalds on 26 June 2020, 07:27:36 UTC
Patch series "ocfs2: fix nfsd over ocfs2 issues", v2.

This is a series of patches to fix issues on nfsd over ocfs2.  patch 1
is to avoid inode removed while nfsd access it patch 2 & 3 is to fix a
panic issue.

This patch (of 4):

When nfsd is getting file dentry using handle or parent dentry of some
dentry, one cluster lock is used to avoid inode removed from other node,
but it still could be removed from local node, so use a rw lock to avoid
this.

Link: http://lkml.kernel.org/r/20200616183829.87211-1-junxiao.bi@oracle.com
Link: http://lkml.kernel.org/r/20200616183829.87211-2-junxiao.bi@oracle.com
Signed-off-by: Junxiao Bi <junxiao.bi@oracle.com>
Reviewed-by: Joseph Qi <joseph.qi@linux.alibaba.com>
Cc: Changwei Ge <gechangwei@live.cn>
Cc: Gang He <ghe@suse.com>
Cc: Joel Becker <jlbec@evilplan.org>
Cc: Jun Piao <piaojun@huawei.com>
Cc: Mark Fasheh <mark@fasheh.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
1 parent fd7af71
Raw File
speculation.txt
This document explains potential effects of speculation, and how undesirable
effects can be mitigated portably using common APIs.

===========
Speculation
===========

To improve performance and minimize average latencies, many contemporary CPUs
employ speculative execution techniques such as branch prediction, performing
work which may be discarded at a later stage.

Typically speculative execution cannot be observed from architectural state,
such as the contents of registers. However, in some cases it is possible to
observe its impact on microarchitectural state, such as the presence or
absence of data in caches. Such state may form side-channels which can be
observed to extract secret information.

For example, in the presence of branch prediction, it is possible for bounds
checks to be ignored by code which is speculatively executed. Consider the
following code::

	int load_array(int *array, unsigned int index)
	{
		if (index >= MAX_ARRAY_ELEMS)
			return 0;
		else
			return array[index];
	}

Which, on arm64, may be compiled to an assembly sequence such as::

	CMP	<index>, #MAX_ARRAY_ELEMS
	B.LT	less
	MOV	<returnval>, #0
	RET
  less:
	LDR	<returnval>, [<array>, <index>]
	RET

It is possible that a CPU mis-predicts the conditional branch, and
speculatively loads array[index], even if index >= MAX_ARRAY_ELEMS. This
value will subsequently be discarded, but the speculated load may affect
microarchitectural state which can be subsequently measured.

More complex sequences involving multiple dependent memory accesses may
result in sensitive information being leaked. Consider the following
code, building on the prior example::

	int load_dependent_arrays(int *arr1, int *arr2, int index)
	{
		int val1, val2,

		val1 = load_array(arr1, index);
		val2 = load_array(arr2, val1);

		return val2;
	}

Under speculation, the first call to load_array() may return the value
of an out-of-bounds address, while the second call will influence
microarchitectural state dependent on this value. This may provide an
arbitrary read primitive.

====================================
Mitigating speculation side-channels
====================================

The kernel provides a generic API to ensure that bounds checks are
respected even under speculation. Architectures which are affected by
speculation-based side-channels are expected to implement these
primitives.

The array_index_nospec() helper in <linux/nospec.h> can be used to
prevent information from being leaked via side-channels.

A call to array_index_nospec(index, size) returns a sanitized index
value that is bounded to [0, size) even under cpu speculation
conditions.

This can be used to protect the earlier load_array() example::

	int load_array(int *array, unsigned int index)
	{
		if (index >= MAX_ARRAY_ELEMS)
			return 0;
		else {
			index = array_index_nospec(index, MAX_ARRAY_ELEMS);
			return array[index];
		}
	}
back to top