Skip to main content
  • Home
  • Development
  • Documentation
  • Donate
  • Operational login
  • Browse the archive

swh logo
SoftwareHeritage
Software
Heritage
Archive
Features
  • Search

  • Downloads

  • Save code now

  • Add forge now

  • Help

https://github.com/charlyknz/HostParasite
09 November 2025, 22:01:45 UTC
  • Code
  • Branches (2)
  • Releases (0)
  • Visits
Revision 4d389805ca702345eb35673f44be81c0d7f5b2ac authored by charlyknz on 31 August 2021, 09:14:12 UTC, committed by GitHub on 31 August 2021, 09:14:12 UTC
add raw data files for the HOBO.R
1 parent 94fdeba
  • Files
  • Changes
    • Branches
    • Releases
    • HEAD
    • refs/heads/add-license-1
    • refs/heads/main
    • 4d389805ca702345eb35673f44be81c0d7f5b2ac
    No releases to show
  • 39e540f
  • /
  • HOBO.R
Raw File Download
Take a new snapshot of a software origin

If the archived software origin currently browsed is not synchronized with its upstream version (for instance when new commits have been issued), you can explicitly request Software Heritage to take a new snapshot of it.

Use the form below to proceed. Once a request has been submitted and accepted, it will be processed as soon as possible. You can then check its processing state by visiting this dedicated page.
swh spinner

Processing "take a new snapshot" request ...

To reference or cite the objects present in the Software Heritage archive, permalinks based on SoftWare Hash IDentifiers (SWHIDs) must be used.
Select below a type of object currently browsed in order to display its associated SWHID and permalink.

  • revision
  • directory
  • content
  • snapshot
origin badgerevision badge
swh:1:rev:4d389805ca702345eb35673f44be81c0d7f5b2ac
origin badgedirectory badge Iframe embedding
swh:1:dir:39e540f128c873aa5543491ca6dfa0679cb5ec5e
origin badgecontent badge Iframe embedding
swh:1:cnt:a75c7a60f0ac16fda8402e1efb53bb2c92e89d3a
origin badgesnapshot badge
swh:1:snp:a9a3352f637b9aef2cc5e527489c51b5b538296f

This interface enables to generate software citations, provided that the root directory of browsed objects contains a citation.cff or codemeta.json file.
Select below a type of object currently browsed in order to generate citations for them.

  • revision
  • directory
  • content
  • snapshot
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Tip revision: 4d389805ca702345eb35673f44be81c0d7f5b2ac authored by charlyknz on 31 August 2021, 09:14:12 UTC
add raw data files for the HOBO.R
Tip revision: 4d38980
HOBO.R
# R Script to analyse HOBO data
## by Charlotte Kunze 01 May 2019

setwd("~/Desktop/Irland/data")
library(lubridate)
library(tidyverse)
library(scales)

#### import data ####
## constant HOBOs
constant_10 <- read_csv2('~/Desktop/Irland/data/hobo/10_degree_constant_end.csv', col_types = cols(date = col_datetime(format = "%m.%d.%y %I:%M:%S%p")) )%>%
  select(no, date, temp) %>%
  filter(temp != 'NA') 

constant_13 <- read_csv2('~/Desktop/Irland/data/hobo/13_degree_constant_end.csv', col_types = cols(date = col_datetime(format = "%m.%d.%y %I:%M:%S%p")) )%>%
  select(no, date, temp) %>%
  filter(temp != 'NA') 

constant_16 <- read_csv2('~/Desktop/Irland/data/hobo/16_degree_light_constant_end.csv', col_types = cols(date = col_datetime(format = "%m.%d.%y %I:%M:%S%p")) )%>%
  select(no, date, temp, light) %>%
  filter(temp != 'NA') 
constant_16_t <- select(constant_16, -light)
constant_19 <- read_csv2('~/Desktop/Irland/data/hobo/19_degree_constant_end.csv', col_types = cols(date = col_datetime(format = "%m.%d.%y %I:%M:%S%p")) )%>%
  select(no, date, temp) %>%
  filter(temp != 'NA') 

constant_22 <- read_csv2('~/Desktop/Irland/data/hobo/22_degree_constant_end.csv', col_types = cols(date = col_datetime(format = "%m.%d.%y %I:%M:%S%p")) )%>%
  select(no, date, temp)%>%
  filter(temp != 'NA') 

constant_25 <- read_csv2('~/Desktop/Irland/data/hobo/25_degree_constant_end.csv', col_types = cols(date = col_datetime(format = "%m.%d.%y %I:%M:%S%p")) )%>%
  select(no, date, temp)%>%
  filter(temp != 'NA') 

constant_28 <- read_csv2('~/Desktop/Irland/data/hobo/28_degree_constant_end.csv', col_types = cols(date = col_datetime(format = "%m.%d.%y %I:%M:%S%p")) )%>%
  select(no, date, temp)%>%
  filter(temp != 'NA') 



## FLUX HOBOs ### 
flux_mean13 <- read_csv2('~/Desktop/Irland/data/hobo/10-16_degree_flux_end.csv', col_types = cols(date = col_datetime(format = "%m.%d.%y %I:%M:%S%p")) )%>%
  select(no, date, temp)%>%
  filter(temp != 'NA') 
  
flux_mean16 <- read_csv2('~/Desktop/Irland/data/hobo/13-19_degree_flux_end.csv', col_types = cols(date = col_datetime(format = "%m.%d.%y %I:%M:%S%p")) )%>%
  select(no, date, temp)%>%
  filter(temp != 'NA') 

  
flux_mean19 <- read_csv2('~/Desktop/Irland/data/hobo/16-22_degree_flux_end.csv', col_types = cols(date = col_datetime(format = "%m.%d.%y %I:%M:%S%p")) )%>%
  select(no, date, temp)%>%
  filter(temp != 'NA') 


flux_mean22 <- read_csv2('~/Desktop/Irland/data/hobo/19-25_degree_flux_end.csv', col_types = cols(date = col_datetime(format = "%m.%d.%y %I:%M:%S%p")) )%>%
  select(no, date, temp)%>%
  filter(temp != 'NA') 

flux_mean25 <- read_csv2('~/Desktop/Irland/data/hobo/22-28_degree_flux_end.csv', col_types = cols(date = col_datetime(format = "%m.%d.%y %I:%M:%S%p")) )%>%
  select(no, date, temp)%>%
  filter(temp != 'NA') 


## PULSE HOBOs

pulse_13 <- read_csv2('~/Desktop/Irland/data/hobo/13_degree_pulse_+6_end.csv', col_types = cols(date = col_datetime(format = "%m.%d.%y %I:%M:%S%p")) )%>%
  select(no, date, temp)%>%
  filter(temp != 'NA') 

pulse_16 <- read_csv2('~/Desktop/Irland/data/hobo/16_degree_pulse_+6_end.csv', col_types = cols(date = col_datetime(format = "%m.%d.%y %I:%M:%S%p")) )%>%
  select(no, date, temp)%>%
  filter(temp != 'NA')

pulse_19 <- read_csv2('~/Desktop/Irland/data/hobo/19_degree_pulse_+6_end.csv', col_types = cols(date = col_datetime(format = "%m.%d.%y %I:%M:%S%p")) )%>%
  select(no, date, temp)%>%
  filter(temp != 'NA')

pulse_22 <- read_csv2('~/Desktop/Irland/data/hobo/22_degree_light_pulse_+6_end.csv', col_types = cols(date = col_datetime(format = "%m.%d.%y %I:%M:%S%p")) )%>%
  select(no, date, temp, light)%>% # light HOBO
  filter(temp != 'NA')
pulse_22_t <- select(pulse_22, -light)


### --------------------------------------------------------------------------------###
#### add tratment information 
constant_10 <- mutate(constant_10, id = paste('constant 10'),
                      expected_temp = paste(10)) 
constant_13 <- mutate(constant_13, id = paste('constant 13'),
                      expected_temp = paste(13))
constant_16_t <- mutate(constant_16_t, id = paste('constant 16'),
                        expected_temp = paste(16))
constant_19 <- mutate(constant_19, id = paste('constant 19'),
                      expected_temp = paste(19))
constant_22 <- mutate(constant_22, id = paste('constant 22'),
                      expected_temp = paste(22))
constant_25 <- mutate(constant_25, id = paste('constant 25'),
                      expected_temp = paste(25))
constant_28 <- mutate(constant_28, id = paste('constant 28'),
                      expected_temp = paste(28))
flux_mean13 <- mutate(flux_mean13, id = paste('flux 13'),
                      expected_temp = paste(13))
flux_mean16 <- mutate(flux_mean16, id = paste('flux 16'),
                      expected_temp = paste(16))
flux_mean19 <- mutate(flux_mean19, id = paste('flux 19'),
                      expected_temp = paste(19))
flux_mean22 <- mutate(flux_mean22, id = paste('flux 22'),
                      expected_temp = paste(22))
flux_mean25 <- mutate(flux_mean25, id = paste('flux 25'),
                      expected_temp = paste(25))
pulse_13 <- mutate(pulse_13, id = paste('pulse 13'),
                   expected_temp = paste(13))
pulse_16 <- mutate(pulse_16, id = paste('pulse 16'),
                   expected_temp = paste(16))
pulse_19 <- mutate(pulse_19, id = paste('pulse 19'),
                   expected_temp = paste(19))
pulse_22_t <- mutate(pulse_22_t, id = paste('pulse 22'),
                     expected_temp = paste(22))

# bind all data together
all_raw_temp <- rbind(constant_10, constant_13, constant_16_t, constant_19, constant_22, constant_25, constant_28,
                      flux_mean13,flux_mean16,flux_mean19, flux_mean22,flux_mean25, pulse_13, pulse_16,  pulse_19, pulse_22_t) 
#write.csv(all_raw_temp, file = 'all_raw_temperatures_hobo.csv')


### --------------------------------------------------------------------------------###
## --------------------------------------------------------------------------------###
#-----------------------------------------------------------------------------------#
#### calculate mean temperatures####
names(all_raw_temp)
mean_temp <- all_raw_temp %>%
  group_by(id) %>%
  summarise(realtemp = mean(temp)) %>%
  separate(id, into = c('treat', 'expected_temp'), sep = ' ')

# plot the expected temperature against observed temperatures 
ggplot(mean_temp, aes(x = as.numeric(expected_temp), y= realtemp, col = as.factor(treatment)))+
  geom_point(size = 3)+
  geom_abline(intercept = 0, slope = 1)+ #adds a vertical line
  labs( col = 'Treatment', x = 'expected mean temperature (in °C)', y = 'measured mean temperature (in °C)')+
  scale_color_manual(values=c('#003C67FF','#EFC000FF','#A73030FF'),labels = c('constant', 'fluctuating', 'heat wave'))+
  theme( panel.background = element_rect(fill = NA), #loescht den Hintergrund meines Plots/ fuellt ihn mit nichts
         panel.grid.major.y = element_line(color='grey', linetype = 'dashed', size=0.2),
         panel.border= element_rect(colour = "black", fill=NA, size=0.5),
         strip.background = element_rect(color = 'black', fill = 'grey95'),
         legend.background = element_blank(),
         legend.title = element_text(hjust=3), #schiebt text nach links in der Legende
         legend.position  ='bottom',
         legend.key = element_blank(),
         text = element_text(size = 13))
#ggsave('temperature_range.png',plot = last_plot(), width = 8, height = 6) #saves your plot at the given directory

mean_temp <- mean_temp %>%
  select(-expected_temp) %>%
  rename(meanTemp = realtemp, 
         treatment = treat) %>%
  mutate(treatment = paste(ifelse(treatment == 'flux', 'fluctuation', treatment)))
write.csv(MeanTempTreatments.csv)
names(mean_temp)
 
write.csv(mean_temp, 'MeanTempTreatments.csv')


#### temperature plots ####
temperature<-all_raw_temp  %>%
  filter(date > ymd_hms("2019-04-09 18:24:09"))%>%
  filter(date < ymd_hms("2019-05-06 09:24:09"))
#constant
ggplot(subset(temperature, id %in% c('constant 10', 'constant 13', 'constant 16', 'constant 19', 'constant 22', 'constant 25', 'constant 28' )), aes(x = date, y = temp))+
         geom_point()+
  facet_wrap(~id)+
  #scale_y_continuous(breaks = seq(10,28,6), limits = c(5, 30))+
  #scale_x_datetime(breaks = '7 days', date_labels = '%d.%m')+  
  labs(x = 'Date', y = 'Temperature (in °C)')+
  theme_classic()

#other
ggplot(subset(temperature, !id %in% c('pulse 22','constant 10', 'constant 13', 'constant 16', 'constant 19', 'constant 22', 'constant 25', 'constant 28' )), aes(x = date, y = temp))+
  geom_point(size = 0.5)+
  geom_line(size = 1)+
  facet_wrap(~id)+
 labs(x = 'Date', y = 'Temperature (in °C)')+
  theme_classic()
#ggsave(last_plot(), file = 'variable_temperatures.png',height = 8, width = 11)

pulse_22 %>%
  filter(date > ymd_hms("2019-04-09 18:24:09"))%>%
  filter(date < ymd_hms("2019-05-06 09:24:09"))%>%
  ggplot(., aes(x = date, y = temp))+
  geom_point()+
  geom_line()+
  geom_hline(aes(yintercept = mean(temp)), colour="blue")+
  scale_x_datetime(breaks = '3 days', date_labels = "%d.%m")+
  scale_y_continuous(breaks = seq(21, 29, 2), limits = c(20, 29))+
  labs(x = ' ', y = 'Temperature (in °C)')+
  theme_bw()


#light plot
pulse_22 %>%
  filter(date > ymd_hms("2019-04-09 18:24:09"))%>%
  filter(date < ymd_hms("2019-05-06 09:24:09"))%>%
  ggplot(., aes(x = date, y = light))+
  geom_point()+
  geom_line()+
  geom_hline(aes(yintercept = mean(light)), colour="blue")+
  scale_x_datetime(breaks = '3 days', date_labels = "%d.%m")+
  scale_y_continuous(breaks = seq(0, 3500, 500), limits=c(0, 3500))+
  labs(x = ' ', y = 'Light intensity (in lux)')+
  theme_bw()
#ggsave('pulse_22_light.png',plot = last_plot(), width = 8, height = 6) #saves your plot at the given directory

The diff you're trying to view is too large. Only the first 1000 changed files have been loaded.
Showing with 0 additions and 0 deletions (0 / 0 diffs computed)
swh spinner

Computing file changes ...

back to top

Software Heritage — Copyright (C) 2015–2025, The Software Heritage developers. License: GNU AGPLv3+.
The source code of Software Heritage itself is available on our development forge.
The source code files archived by Software Heritage are available under their own copyright and licenses.
Terms of use: Archive access, API— Content policy— Contact— JavaScript license information— Web API