https://github.com/torvalds/linux
Revision 4dc2287c1805e7fe8a7cb90bbcd44abee8cdb914 authored by Bjorn Helgaas on 16 December 2010, 17:38:56 UTC, committed by Jesse Barnes on 17 December 2010, 18:01:24 UTC
When we allocate address space, e.g., to assign it to a PCI device, don't
allocate anything mentioned in the BIOS E820 memory map.

On recent machines (2008 and newer), we assign PCI resources from the
windows described by the ACPI PCI host bridge _CRS.  On many Dell
machines, these windows overlap some E820 reserved areas, e.g.,

    BIOS-e820: 00000000bfe4dc00 - 00000000c0000000 (reserved)
    pci_root PNP0A03:00: host bridge window [mem 0xbff00000-0xdfffffff]

If we put devices at 0xbff00000, they don't work, probably because
that's really RAM, not I/O memory.  This patch prevents that by removing
the 0xbfe4dc00-0xbfffffff area from the "available" resource.

I'm not very happy with this solution because Windows solves the problem
differently (it seems to ignore E820 reserved areas and it allocates
top-down instead of bottom-up; details at comment 45 of the bugzilla
below).  That means we're vulnerable to BIOS defects that Windows would not
trip over.  For example, if BIOS described a device in ACPI but didn't
mention it in E820, Windows would work fine but Linux would fail.

Reference: https://bugzilla.kernel.org/show_bug.cgi?id=16228
Acked-by: H. Peter Anvin <hpa@zytor.com>
Signed-off-by: Bjorn Helgaas <bjorn.helgaas@hp.com>
Signed-off-by: Jesse Barnes <jbarnes@virtuousgeek.org>
1 parent 30919b0
Raw File
Tip revision: 4dc2287c1805e7fe8a7cb90bbcd44abee8cdb914 authored by Bjorn Helgaas on 16 December 2010, 17:38:56 UTC
x86: avoid E820 regions when allocating address space
Tip revision: 4dc2287
recordmcount.c
/*
 * recordmcount.c: construct a table of the locations of calls to 'mcount'
 * so that ftrace can find them quickly.
 * Copyright 2009 John F. Reiser <jreiser@BitWagon.com>.  All rights reserved.
 * Licensed under the GNU General Public License, version 2 (GPLv2).
 *
 * Restructured to fit Linux format, as well as other updates:
 *  Copyright 2010 Steven Rostedt <srostedt@redhat.com>, Red Hat Inc.
 */

/*
 * Strategy: alter the .o file in-place.
 *
 * Append a new STRTAB that has the new section names, followed by a new array
 * ElfXX_Shdr[] that has the new section headers, followed by the section
 * contents for __mcount_loc and its relocations.  The old shstrtab strings,
 * and the old ElfXX_Shdr[] array, remain as "garbage" (commonly, a couple
 * kilobytes.)  Subsequent processing by /bin/ld (or the kernel module loader)
 * will ignore the garbage regions, because they are not designated by the
 * new .e_shoff nor the new ElfXX_Shdr[].  [In order to remove the garbage,
 * then use "ld -r" to create a new file that omits the garbage.]
 */

#include <sys/types.h>
#include <sys/mman.h>
#include <sys/stat.h>
#include <elf.h>
#include <fcntl.h>
#include <setjmp.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>

static int fd_map;	/* File descriptor for file being modified. */
static int mmap_failed; /* Boolean flag. */
static void *ehdr_curr; /* current ElfXX_Ehdr *  for resource cleanup */
static char gpfx;	/* prefix for global symbol name (sometimes '_') */
static struct stat sb;	/* Remember .st_size, etc. */
static jmp_buf jmpenv;	/* setjmp/longjmp per-file error escape */

/* setjmp() return values */
enum {
	SJ_SETJMP = 0,  /* hardwired first return */
	SJ_FAIL,
	SJ_SUCCEED
};

/* Per-file resource cleanup when multiple files. */
static void
cleanup(void)
{
	if (!mmap_failed)
		munmap(ehdr_curr, sb.st_size);
	else
		free(ehdr_curr);
	close(fd_map);
}

static void __attribute__((noreturn))
fail_file(void)
{
	cleanup();
	longjmp(jmpenv, SJ_FAIL);
}

static void __attribute__((noreturn))
succeed_file(void)
{
	cleanup();
	longjmp(jmpenv, SJ_SUCCEED);
}

/* ulseek, uread, ...:  Check return value for errors. */

static off_t
ulseek(int const fd, off_t const offset, int const whence)
{
	off_t const w = lseek(fd, offset, whence);
	if ((off_t)-1 == w) {
		perror("lseek");
		fail_file();
	}
	return w;
}

static size_t
uread(int const fd, void *const buf, size_t const count)
{
	size_t const n = read(fd, buf, count);
	if (n != count) {
		perror("read");
		fail_file();
	}
	return n;
}

static size_t
uwrite(int const fd, void const *const buf, size_t const count)
{
	size_t const n = write(fd, buf, count);
	if (n != count) {
		perror("write");
		fail_file();
	}
	return n;
}

static void *
umalloc(size_t size)
{
	void *const addr = malloc(size);
	if (0 == addr) {
		fprintf(stderr, "malloc failed: %zu bytes\n", size);
		fail_file();
	}
	return addr;
}

/*
 * Get the whole file as a programming convenience in order to avoid
 * malloc+lseek+read+free of many pieces.  If successful, then mmap
 * avoids copying unused pieces; else just read the whole file.
 * Open for both read and write; new info will be appended to the file.
 * Use MAP_PRIVATE so that a few changes to the in-memory ElfXX_Ehdr
 * do not propagate to the file until an explicit overwrite at the last.
 * This preserves most aspects of consistency (all except .st_size)
 * for simultaneous readers of the file while we are appending to it.
 * However, multiple writers still are bad.  We choose not to use
 * locking because it is expensive and the use case of kernel build
 * makes multiple writers unlikely.
 */
static void *mmap_file(char const *fname)
{
	void *addr;

	fd_map = open(fname, O_RDWR);
	if (0 > fd_map || 0 > fstat(fd_map, &sb)) {
		perror(fname);
		fail_file();
	}
	if (!S_ISREG(sb.st_mode)) {
		fprintf(stderr, "not a regular file: %s\n", fname);
		fail_file();
	}
	addr = mmap(0, sb.st_size, PROT_READ|PROT_WRITE, MAP_PRIVATE,
		    fd_map, 0);
	mmap_failed = 0;
	if (MAP_FAILED == addr) {
		mmap_failed = 1;
		addr = umalloc(sb.st_size);
		uread(fd_map, addr, sb.st_size);
	}
	return addr;
}

/* w8rev, w8nat, ...: Handle endianness. */

static uint64_t w8rev(uint64_t const x)
{
	return   ((0xff & (x >> (0 * 8))) << (7 * 8))
	       | ((0xff & (x >> (1 * 8))) << (6 * 8))
	       | ((0xff & (x >> (2 * 8))) << (5 * 8))
	       | ((0xff & (x >> (3 * 8))) << (4 * 8))
	       | ((0xff & (x >> (4 * 8))) << (3 * 8))
	       | ((0xff & (x >> (5 * 8))) << (2 * 8))
	       | ((0xff & (x >> (6 * 8))) << (1 * 8))
	       | ((0xff & (x >> (7 * 8))) << (0 * 8));
}

static uint32_t w4rev(uint32_t const x)
{
	return   ((0xff & (x >> (0 * 8))) << (3 * 8))
	       | ((0xff & (x >> (1 * 8))) << (2 * 8))
	       | ((0xff & (x >> (2 * 8))) << (1 * 8))
	       | ((0xff & (x >> (3 * 8))) << (0 * 8));
}

static uint32_t w2rev(uint16_t const x)
{
	return   ((0xff & (x >> (0 * 8))) << (1 * 8))
	       | ((0xff & (x >> (1 * 8))) << (0 * 8));
}

static uint64_t w8nat(uint64_t const x)
{
	return x;
}

static uint32_t w4nat(uint32_t const x)
{
	return x;
}

static uint32_t w2nat(uint16_t const x)
{
	return x;
}

static uint64_t (*w8)(uint64_t);
static uint32_t (*w)(uint32_t);
static uint32_t (*w2)(uint16_t);

/* Names of the sections that could contain calls to mcount. */
static int
is_mcounted_section_name(char const *const txtname)
{
	return 0 == strcmp(".text",          txtname) ||
		0 == strcmp(".sched.text",    txtname) ||
		0 == strcmp(".spinlock.text", txtname) ||
		0 == strcmp(".irqentry.text", txtname) ||
		0 == strcmp(".text.unlikely", txtname);
}

/* 32 bit and 64 bit are very similar */
#include "recordmcount.h"
#define RECORD_MCOUNT_64
#include "recordmcount.h"

/* 64-bit EM_MIPS has weird ELF64_Rela.r_info.
 * http://techpubs.sgi.com/library/manuals/4000/007-4658-001/pdf/007-4658-001.pdf
 * We interpret Table 29 Relocation Operation (Elf64_Rel, Elf64_Rela) [p.40]
 * to imply the order of the members; the spec does not say so.
 *	typedef unsigned char Elf64_Byte;
 * fails on MIPS64 because their <elf.h> already has it!
 */

typedef uint8_t myElf64_Byte;		/* Type for a 8-bit quantity.  */

union mips_r_info {
	Elf64_Xword r_info;
	struct {
		Elf64_Word r_sym;		/* Symbol index.  */
		myElf64_Byte r_ssym;		/* Special symbol.  */
		myElf64_Byte r_type3;		/* Third relocation.  */
		myElf64_Byte r_type2;		/* Second relocation.  */
		myElf64_Byte r_type;		/* First relocation.  */
	} r_mips;
};

static uint64_t MIPS64_r_sym(Elf64_Rel const *rp)
{
	return w(((union mips_r_info){ .r_info = rp->r_info }).r_mips.r_sym);
}

static void MIPS64_r_info(Elf64_Rel *const rp, unsigned sym, unsigned type)
{
	rp->r_info = ((union mips_r_info){
		.r_mips = { .r_sym = w(sym), .r_type = type }
	}).r_info;
}

static void
do_file(char const *const fname)
{
	Elf32_Ehdr *const ehdr = mmap_file(fname);
	unsigned int reltype = 0;

	ehdr_curr = ehdr;
	w = w4nat;
	w2 = w2nat;
	w8 = w8nat;
	switch (ehdr->e_ident[EI_DATA]) {
		static unsigned int const endian = 1;
	default: {
		fprintf(stderr, "unrecognized ELF data encoding %d: %s\n",
			ehdr->e_ident[EI_DATA], fname);
		fail_file();
	} break;
	case ELFDATA2LSB: {
		if (1 != *(unsigned char const *)&endian) {
			/* main() is big endian, file.o is little endian. */
			w = w4rev;
			w2 = w2rev;
			w8 = w8rev;
		}
	} break;
	case ELFDATA2MSB: {
		if (0 != *(unsigned char const *)&endian) {
			/* main() is little endian, file.o is big endian. */
			w = w4rev;
			w2 = w2rev;
			w8 = w8rev;
		}
	} break;
	}  /* end switch */
	if (0 != memcmp(ELFMAG, ehdr->e_ident, SELFMAG)
	||  ET_REL != w2(ehdr->e_type)
	||  EV_CURRENT != ehdr->e_ident[EI_VERSION]) {
		fprintf(stderr, "unrecognized ET_REL file %s\n", fname);
		fail_file();
	}

	gpfx = 0;
	switch (w2(ehdr->e_machine)) {
	default: {
		fprintf(stderr, "unrecognized e_machine %d %s\n",
			w2(ehdr->e_machine), fname);
		fail_file();
	} break;
	case EM_386:	 reltype = R_386_32;                   break;
	case EM_ARM:	 reltype = R_ARM_ABS32;                break;
	case EM_IA_64:	 reltype = R_IA64_IMM64;   gpfx = '_'; break;
	case EM_MIPS:	 /* reltype: e_class    */ gpfx = '_'; break;
	case EM_PPC:	 reltype = R_PPC_ADDR32;   gpfx = '_'; break;
	case EM_PPC64:	 reltype = R_PPC64_ADDR64; gpfx = '_'; break;
	case EM_S390:    /* reltype: e_class    */ gpfx = '_'; break;
	case EM_SH:	 reltype = R_SH_DIR32;                 break;
	case EM_SPARCV9: reltype = R_SPARC_64;     gpfx = '_'; break;
	case EM_X86_64:	 reltype = R_X86_64_64;                break;
	}  /* end switch */

	switch (ehdr->e_ident[EI_CLASS]) {
	default: {
		fprintf(stderr, "unrecognized ELF class %d %s\n",
			ehdr->e_ident[EI_CLASS], fname);
		fail_file();
	} break;
	case ELFCLASS32: {
		if (sizeof(Elf32_Ehdr) != w2(ehdr->e_ehsize)
		||  sizeof(Elf32_Shdr) != w2(ehdr->e_shentsize)) {
			fprintf(stderr,
				"unrecognized ET_REL file: %s\n", fname);
			fail_file();
		}
		if (EM_S390 == w2(ehdr->e_machine))
			reltype = R_390_32;
		if (EM_MIPS == w2(ehdr->e_machine)) {
			reltype = R_MIPS_32;
			is_fake_mcount32 = MIPS32_is_fake_mcount;
		}
		do32(ehdr, fname, reltype);
	} break;
	case ELFCLASS64: {
		Elf64_Ehdr *const ghdr = (Elf64_Ehdr *)ehdr;
		if (sizeof(Elf64_Ehdr) != w2(ghdr->e_ehsize)
		||  sizeof(Elf64_Shdr) != w2(ghdr->e_shentsize)) {
			fprintf(stderr,
				"unrecognized ET_REL file: %s\n", fname);
			fail_file();
		}
		if (EM_S390 == w2(ghdr->e_machine))
			reltype = R_390_64;
		if (EM_MIPS == w2(ghdr->e_machine)) {
			reltype = R_MIPS_64;
			Elf64_r_sym = MIPS64_r_sym;
			Elf64_r_info = MIPS64_r_info;
			is_fake_mcount64 = MIPS64_is_fake_mcount;
		}
		do64(ghdr, fname, reltype);
	} break;
	}  /* end switch */

	cleanup();
}

int
main(int argc, char const *argv[])
{
	const char ftrace[] = "kernel/trace/ftrace.o";
	int ftrace_size = sizeof(ftrace) - 1;
	int n_error = 0;  /* gcc-4.3.0 false positive complaint */

	if (argc <= 1) {
		fprintf(stderr, "usage: recordmcount file.o...\n");
		return 0;
	}

	/* Process each file in turn, allowing deep failure. */
	for (--argc, ++argv; 0 < argc; --argc, ++argv) {
		int const sjval = setjmp(jmpenv);
		int len;

		/*
		 * The file kernel/trace/ftrace.o references the mcount
		 * function but does not call it. Since ftrace.o should
		 * not be traced anyway, we just skip it.
		 */
		len = strlen(argv[0]);
		if (len >= ftrace_size &&
		    strcmp(argv[0] + (len - ftrace_size), ftrace) == 0)
			continue;

		switch (sjval) {
		default: {
			fprintf(stderr, "internal error: %s\n", argv[0]);
			exit(1);
		} break;
		case SJ_SETJMP: {  /* normal sequence */
			/* Avoid problems if early cleanup() */
			fd_map = -1;
			ehdr_curr = NULL;
			mmap_failed = 1;
			do_file(argv[0]);
		} break;
		case SJ_FAIL: {  /* error in do_file or below */
			++n_error;
		} break;
		case SJ_SUCCEED: {  /* premature success */
			/* do nothing */
		} break;
		}  /* end switch */
	}
	return !!n_error;
}


back to top