https://github.com/torvalds/linux
Revision 4fca50d440cc5d4dc570ad5484cc0b70b381bc2a authored by Jan Kara on 08 September 2022, 09:21:24 UTC, committed by Theodore Ts'o on 22 September 2022, 02:11:34 UTC
One of the side-effects of mb_optimize_scan was that the optimized
functions to select next group to try were called even before we tried
the goal group. As a result we no longer allocate files close to
corresponding inodes as well as we don't try to expand currently
allocated extent in the same group. This results in reaim regression
with workfile.disk workload of upto 8% with many clients on my test
machine:

                     baseline               mb_optimize_scan
Hmean     disk-1       2114.16 (   0.00%)     2099.37 (  -0.70%)
Hmean     disk-41     87794.43 (   0.00%)    83787.47 *  -4.56%*
Hmean     disk-81    148170.73 (   0.00%)   135527.05 *  -8.53%*
Hmean     disk-121   177506.11 (   0.00%)   166284.93 *  -6.32%*
Hmean     disk-161   220951.51 (   0.00%)   207563.39 *  -6.06%*
Hmean     disk-201   208722.74 (   0.00%)   203235.59 (  -2.63%)
Hmean     disk-241   222051.60 (   0.00%)   217705.51 (  -1.96%)
Hmean     disk-281   252244.17 (   0.00%)   241132.72 *  -4.41%*
Hmean     disk-321   255844.84 (   0.00%)   245412.84 *  -4.08%*

Also this is causing huge regression (time increased by a factor of 5 or
so) when untarring archive with lots of small files on some eMMC storage
cards.

Fix the problem by making sure we try goal group first.

Fixes: 196e402adf2e ("ext4: improve cr 0 / cr 1 group scanning")
CC: stable@kernel.org
Reported-and-tested-by: Stefan Wahren <stefan.wahren@i2se.com>
Tested-by: Ojaswin Mujoo <ojaswin@linux.ibm.com>
Reviewed-by: Ritesh Harjani (IBM) <ritesh.list@gmail.com>
Link: https://lore.kernel.org/all/20220727105123.ckwrhbilzrxqpt24@quack3/
Link: https://lore.kernel.org/all/0d81a7c2-46b7-6010-62a4-3e6cfc1628d6@i2se.com/
Signed-off-by: Jan Kara <jack@suse.cz>
Link: https://lore.kernel.org/r/20220908092136.11770-1-jack@suse.cz
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
1 parent 7e18e42
Raw File
Tip revision: 4fca50d440cc5d4dc570ad5484cc0b70b381bc2a authored by Jan Kara on 08 September 2022, 09:21:24 UTC
ext4: make mballoc try target group first even with mb_optimize_scan
Tip revision: 4fca50d
hctr2.c
// SPDX-License-Identifier: GPL-2.0
/*
 * HCTR2 length-preserving encryption mode
 *
 * Copyright 2021 Google LLC
 */


/*
 * HCTR2 is a length-preserving encryption mode that is efficient on
 * processors with instructions to accelerate AES and carryless
 * multiplication, e.g. x86 processors with AES-NI and CLMUL, and ARM
 * processors with the ARMv8 crypto extensions.
 *
 * For more details, see the paper: "Length-preserving encryption with HCTR2"
 * (https://eprint.iacr.org/2021/1441.pdf)
 */

#include <crypto/internal/cipher.h>
#include <crypto/internal/hash.h>
#include <crypto/internal/skcipher.h>
#include <crypto/polyval.h>
#include <crypto/scatterwalk.h>
#include <linux/module.h>

#define BLOCKCIPHER_BLOCK_SIZE		16

/*
 * The specification allows variable-length tweaks, but Linux's crypto API
 * currently only allows algorithms to support a single length.  The "natural"
 * tweak length for HCTR2 is 16, since that fits into one POLYVAL block for
 * the best performance.  But longer tweaks are useful for fscrypt, to avoid
 * needing to derive per-file keys.  So instead we use two blocks, or 32 bytes.
 */
#define TWEAK_SIZE		32

struct hctr2_instance_ctx {
	struct crypto_cipher_spawn blockcipher_spawn;
	struct crypto_skcipher_spawn xctr_spawn;
	struct crypto_shash_spawn polyval_spawn;
};

struct hctr2_tfm_ctx {
	struct crypto_cipher *blockcipher;
	struct crypto_skcipher *xctr;
	struct crypto_shash *polyval;
	u8 L[BLOCKCIPHER_BLOCK_SIZE];
	int hashed_tweak_offset;
	/*
	 * This struct is allocated with extra space for two exported hash
	 * states.  Since the hash state size is not known at compile-time, we
	 * can't add these to the struct directly.
	 *
	 * hashed_tweaklen_divisible;
	 * hashed_tweaklen_remainder;
	 */
};

struct hctr2_request_ctx {
	u8 first_block[BLOCKCIPHER_BLOCK_SIZE];
	u8 xctr_iv[BLOCKCIPHER_BLOCK_SIZE];
	struct scatterlist *bulk_part_dst;
	struct scatterlist *bulk_part_src;
	struct scatterlist sg_src[2];
	struct scatterlist sg_dst[2];
	/*
	 * Sub-request sizes are unknown at compile-time, so they need to go
	 * after the members with known sizes.
	 */
	union {
		struct shash_desc hash_desc;
		struct skcipher_request xctr_req;
	} u;
	/*
	 * This struct is allocated with extra space for one exported hash
	 * state.  Since the hash state size is not known at compile-time, we
	 * can't add it to the struct directly.
	 *
	 * hashed_tweak;
	 */
};

static inline u8 *hctr2_hashed_tweaklen(const struct hctr2_tfm_ctx *tctx,
					bool has_remainder)
{
	u8 *p = (u8 *)tctx + sizeof(*tctx);

	if (has_remainder) /* For messages not a multiple of block length */
		p += crypto_shash_statesize(tctx->polyval);
	return p;
}

static inline u8 *hctr2_hashed_tweak(const struct hctr2_tfm_ctx *tctx,
				     struct hctr2_request_ctx *rctx)
{
	return (u8 *)rctx + tctx->hashed_tweak_offset;
}

/*
 * The input data for each HCTR2 hash step begins with a 16-byte block that
 * contains the tweak length and a flag that indicates whether the input is evenly
 * divisible into blocks.  Since this implementation only supports one tweak
 * length, we precompute the two hash states resulting from hashing the two
 * possible values of this initial block.  This reduces by one block the amount of
 * data that needs to be hashed for each encryption/decryption
 *
 * These precomputed hashes are stored in hctr2_tfm_ctx.
 */
static int hctr2_hash_tweaklen(struct hctr2_tfm_ctx *tctx, bool has_remainder)
{
	SHASH_DESC_ON_STACK(shash, tfm->polyval);
	__le64 tweak_length_block[2];
	int err;

	shash->tfm = tctx->polyval;
	memset(tweak_length_block, 0, sizeof(tweak_length_block));

	tweak_length_block[0] = cpu_to_le64(TWEAK_SIZE * 8 * 2 + 2 + has_remainder);
	err = crypto_shash_init(shash);
	if (err)
		return err;
	err = crypto_shash_update(shash, (u8 *)tweak_length_block,
				  POLYVAL_BLOCK_SIZE);
	if (err)
		return err;
	return crypto_shash_export(shash, hctr2_hashed_tweaklen(tctx, has_remainder));
}

static int hctr2_setkey(struct crypto_skcipher *tfm, const u8 *key,
			unsigned int keylen)
{
	struct hctr2_tfm_ctx *tctx = crypto_skcipher_ctx(tfm);
	u8 hbar[BLOCKCIPHER_BLOCK_SIZE];
	int err;

	crypto_cipher_clear_flags(tctx->blockcipher, CRYPTO_TFM_REQ_MASK);
	crypto_cipher_set_flags(tctx->blockcipher,
				crypto_skcipher_get_flags(tfm) &
				CRYPTO_TFM_REQ_MASK);
	err = crypto_cipher_setkey(tctx->blockcipher, key, keylen);
	if (err)
		return err;

	crypto_skcipher_clear_flags(tctx->xctr, CRYPTO_TFM_REQ_MASK);
	crypto_skcipher_set_flags(tctx->xctr,
				  crypto_skcipher_get_flags(tfm) &
				  CRYPTO_TFM_REQ_MASK);
	err = crypto_skcipher_setkey(tctx->xctr, key, keylen);
	if (err)
		return err;

	memset(hbar, 0, sizeof(hbar));
	crypto_cipher_encrypt_one(tctx->blockcipher, hbar, hbar);

	memset(tctx->L, 0, sizeof(tctx->L));
	tctx->L[0] = 0x01;
	crypto_cipher_encrypt_one(tctx->blockcipher, tctx->L, tctx->L);

	crypto_shash_clear_flags(tctx->polyval, CRYPTO_TFM_REQ_MASK);
	crypto_shash_set_flags(tctx->polyval, crypto_skcipher_get_flags(tfm) &
			       CRYPTO_TFM_REQ_MASK);
	err = crypto_shash_setkey(tctx->polyval, hbar, BLOCKCIPHER_BLOCK_SIZE);
	if (err)
		return err;
	memzero_explicit(hbar, sizeof(hbar));

	return hctr2_hash_tweaklen(tctx, true) ?: hctr2_hash_tweaklen(tctx, false);
}

static int hctr2_hash_tweak(struct skcipher_request *req)
{
	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
	const struct hctr2_tfm_ctx *tctx = crypto_skcipher_ctx(tfm);
	struct hctr2_request_ctx *rctx = skcipher_request_ctx(req);
	struct shash_desc *hash_desc = &rctx->u.hash_desc;
	int err;
	bool has_remainder = req->cryptlen % POLYVAL_BLOCK_SIZE;

	hash_desc->tfm = tctx->polyval;
	err = crypto_shash_import(hash_desc, hctr2_hashed_tweaklen(tctx, has_remainder));
	if (err)
		return err;
	err = crypto_shash_update(hash_desc, req->iv, TWEAK_SIZE);
	if (err)
		return err;

	// Store the hashed tweak, since we need it when computing both
	// H(T || N) and H(T || V).
	return crypto_shash_export(hash_desc, hctr2_hashed_tweak(tctx, rctx));
}

static int hctr2_hash_message(struct skcipher_request *req,
			      struct scatterlist *sgl,
			      u8 digest[POLYVAL_DIGEST_SIZE])
{
	static const u8 padding[BLOCKCIPHER_BLOCK_SIZE] = { 0x1 };
	struct hctr2_request_ctx *rctx = skcipher_request_ctx(req);
	struct shash_desc *hash_desc = &rctx->u.hash_desc;
	const unsigned int bulk_len = req->cryptlen - BLOCKCIPHER_BLOCK_SIZE;
	struct sg_mapping_iter miter;
	unsigned int remainder = bulk_len % BLOCKCIPHER_BLOCK_SIZE;
	int i;
	int err = 0;
	int n = 0;

	sg_miter_start(&miter, sgl, sg_nents(sgl),
		       SG_MITER_FROM_SG | SG_MITER_ATOMIC);
	for (i = 0; i < bulk_len; i += n) {
		sg_miter_next(&miter);
		n = min_t(unsigned int, miter.length, bulk_len - i);
		err = crypto_shash_update(hash_desc, miter.addr, n);
		if (err)
			break;
	}
	sg_miter_stop(&miter);

	if (err)
		return err;

	if (remainder) {
		err = crypto_shash_update(hash_desc, padding,
					  BLOCKCIPHER_BLOCK_SIZE - remainder);
		if (err)
			return err;
	}
	return crypto_shash_final(hash_desc, digest);
}

static int hctr2_finish(struct skcipher_request *req)
{
	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
	const struct hctr2_tfm_ctx *tctx = crypto_skcipher_ctx(tfm);
	struct hctr2_request_ctx *rctx = skcipher_request_ctx(req);
	u8 digest[POLYVAL_DIGEST_SIZE];
	struct shash_desc *hash_desc = &rctx->u.hash_desc;
	int err;

	// U = UU ^ H(T || V)
	// or M = MM ^ H(T || N)
	hash_desc->tfm = tctx->polyval;
	err = crypto_shash_import(hash_desc, hctr2_hashed_tweak(tctx, rctx));
	if (err)
		return err;
	err = hctr2_hash_message(req, rctx->bulk_part_dst, digest);
	if (err)
		return err;
	crypto_xor(rctx->first_block, digest, BLOCKCIPHER_BLOCK_SIZE);

	// Copy U (or M) into dst scatterlist
	scatterwalk_map_and_copy(rctx->first_block, req->dst,
				 0, BLOCKCIPHER_BLOCK_SIZE, 1);
	return 0;
}

static void hctr2_xctr_done(struct crypto_async_request *areq,
				    int err)
{
	struct skcipher_request *req = areq->data;

	if (!err)
		err = hctr2_finish(req);

	skcipher_request_complete(req, err);
}

static int hctr2_crypt(struct skcipher_request *req, bool enc)
{
	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
	const struct hctr2_tfm_ctx *tctx = crypto_skcipher_ctx(tfm);
	struct hctr2_request_ctx *rctx = skcipher_request_ctx(req);
	u8 digest[POLYVAL_DIGEST_SIZE];
	int bulk_len = req->cryptlen - BLOCKCIPHER_BLOCK_SIZE;
	int err;

	// Requests must be at least one block
	if (req->cryptlen < BLOCKCIPHER_BLOCK_SIZE)
		return -EINVAL;

	// Copy M (or U) into a temporary buffer
	scatterwalk_map_and_copy(rctx->first_block, req->src,
				 0, BLOCKCIPHER_BLOCK_SIZE, 0);

	// Create scatterlists for N and V
	rctx->bulk_part_src = scatterwalk_ffwd(rctx->sg_src, req->src,
					       BLOCKCIPHER_BLOCK_SIZE);
	rctx->bulk_part_dst = scatterwalk_ffwd(rctx->sg_dst, req->dst,
					       BLOCKCIPHER_BLOCK_SIZE);

	// MM = M ^ H(T || N)
	// or UU = U ^ H(T || V)
	err = hctr2_hash_tweak(req);
	if (err)
		return err;
	err = hctr2_hash_message(req, rctx->bulk_part_src, digest);
	if (err)
		return err;
	crypto_xor(digest, rctx->first_block, BLOCKCIPHER_BLOCK_SIZE);

	// UU = E(MM)
	// or MM = D(UU)
	if (enc)
		crypto_cipher_encrypt_one(tctx->blockcipher, rctx->first_block,
					  digest);
	else
		crypto_cipher_decrypt_one(tctx->blockcipher, rctx->first_block,
					  digest);

	// S = MM ^ UU ^ L
	crypto_xor(digest, rctx->first_block, BLOCKCIPHER_BLOCK_SIZE);
	crypto_xor_cpy(rctx->xctr_iv, digest, tctx->L, BLOCKCIPHER_BLOCK_SIZE);

	// V = XCTR(S, N)
	// or N = XCTR(S, V)
	skcipher_request_set_tfm(&rctx->u.xctr_req, tctx->xctr);
	skcipher_request_set_crypt(&rctx->u.xctr_req, rctx->bulk_part_src,
				   rctx->bulk_part_dst, bulk_len,
				   rctx->xctr_iv);
	skcipher_request_set_callback(&rctx->u.xctr_req,
				      req->base.flags,
				      hctr2_xctr_done, req);
	return crypto_skcipher_encrypt(&rctx->u.xctr_req) ?:
		hctr2_finish(req);
}

static int hctr2_encrypt(struct skcipher_request *req)
{
	return hctr2_crypt(req, true);
}

static int hctr2_decrypt(struct skcipher_request *req)
{
	return hctr2_crypt(req, false);
}

static int hctr2_init_tfm(struct crypto_skcipher *tfm)
{
	struct skcipher_instance *inst = skcipher_alg_instance(tfm);
	struct hctr2_instance_ctx *ictx = skcipher_instance_ctx(inst);
	struct hctr2_tfm_ctx *tctx = crypto_skcipher_ctx(tfm);
	struct crypto_skcipher *xctr;
	struct crypto_cipher *blockcipher;
	struct crypto_shash *polyval;
	unsigned int subreq_size;
	int err;

	xctr = crypto_spawn_skcipher(&ictx->xctr_spawn);
	if (IS_ERR(xctr))
		return PTR_ERR(xctr);

	blockcipher = crypto_spawn_cipher(&ictx->blockcipher_spawn);
	if (IS_ERR(blockcipher)) {
		err = PTR_ERR(blockcipher);
		goto err_free_xctr;
	}

	polyval = crypto_spawn_shash(&ictx->polyval_spawn);
	if (IS_ERR(polyval)) {
		err = PTR_ERR(polyval);
		goto err_free_blockcipher;
	}

	tctx->xctr = xctr;
	tctx->blockcipher = blockcipher;
	tctx->polyval = polyval;

	BUILD_BUG_ON(offsetofend(struct hctr2_request_ctx, u) !=
				 sizeof(struct hctr2_request_ctx));
	subreq_size = max(sizeof_field(struct hctr2_request_ctx, u.hash_desc) +
			  crypto_shash_descsize(polyval),
			  sizeof_field(struct hctr2_request_ctx, u.xctr_req) +
			  crypto_skcipher_reqsize(xctr));

	tctx->hashed_tweak_offset = offsetof(struct hctr2_request_ctx, u) +
				    subreq_size;
	crypto_skcipher_set_reqsize(tfm, tctx->hashed_tweak_offset +
				    crypto_shash_statesize(polyval));
	return 0;

err_free_blockcipher:
	crypto_free_cipher(blockcipher);
err_free_xctr:
	crypto_free_skcipher(xctr);
	return err;
}

static void hctr2_exit_tfm(struct crypto_skcipher *tfm)
{
	struct hctr2_tfm_ctx *tctx = crypto_skcipher_ctx(tfm);

	crypto_free_cipher(tctx->blockcipher);
	crypto_free_skcipher(tctx->xctr);
	crypto_free_shash(tctx->polyval);
}

static void hctr2_free_instance(struct skcipher_instance *inst)
{
	struct hctr2_instance_ctx *ictx = skcipher_instance_ctx(inst);

	crypto_drop_cipher(&ictx->blockcipher_spawn);
	crypto_drop_skcipher(&ictx->xctr_spawn);
	crypto_drop_shash(&ictx->polyval_spawn);
	kfree(inst);
}

static int hctr2_create_common(struct crypto_template *tmpl,
			       struct rtattr **tb,
			       const char *xctr_name,
			       const char *polyval_name)
{
	u32 mask;
	struct skcipher_instance *inst;
	struct hctr2_instance_ctx *ictx;
	struct skcipher_alg *xctr_alg;
	struct crypto_alg *blockcipher_alg;
	struct shash_alg *polyval_alg;
	char blockcipher_name[CRYPTO_MAX_ALG_NAME];
	int len;
	int err;

	err = crypto_check_attr_type(tb, CRYPTO_ALG_TYPE_SKCIPHER, &mask);
	if (err)
		return err;

	inst = kzalloc(sizeof(*inst) + sizeof(*ictx), GFP_KERNEL);
	if (!inst)
		return -ENOMEM;
	ictx = skcipher_instance_ctx(inst);

	/* Stream cipher, xctr(block_cipher) */
	err = crypto_grab_skcipher(&ictx->xctr_spawn,
				   skcipher_crypto_instance(inst),
				   xctr_name, 0, mask);
	if (err)
		goto err_free_inst;
	xctr_alg = crypto_spawn_skcipher_alg(&ictx->xctr_spawn);

	err = -EINVAL;
	if (strncmp(xctr_alg->base.cra_name, "xctr(", 5))
		goto err_free_inst;
	len = strscpy(blockcipher_name, xctr_alg->base.cra_name + 5,
		      sizeof(blockcipher_name));
	if (len < 1)
		goto err_free_inst;
	if (blockcipher_name[len - 1] != ')')
		goto err_free_inst;
	blockcipher_name[len - 1] = 0;

	/* Block cipher, e.g. "aes" */
	err = crypto_grab_cipher(&ictx->blockcipher_spawn,
				 skcipher_crypto_instance(inst),
				 blockcipher_name, 0, mask);
	if (err)
		goto err_free_inst;
	blockcipher_alg = crypto_spawn_cipher_alg(&ictx->blockcipher_spawn);

	/* Require blocksize of 16 bytes */
	err = -EINVAL;
	if (blockcipher_alg->cra_blocksize != BLOCKCIPHER_BLOCK_SIZE)
		goto err_free_inst;

	/* Polyval ε-∆U hash function */
	err = crypto_grab_shash(&ictx->polyval_spawn,
				skcipher_crypto_instance(inst),
				polyval_name, 0, mask);
	if (err)
		goto err_free_inst;
	polyval_alg = crypto_spawn_shash_alg(&ictx->polyval_spawn);

	/* Ensure Polyval is being used */
	err = -EINVAL;
	if (strcmp(polyval_alg->base.cra_name, "polyval") != 0)
		goto err_free_inst;

	/* Instance fields */

	err = -ENAMETOOLONG;
	if (snprintf(inst->alg.base.cra_name, CRYPTO_MAX_ALG_NAME, "hctr2(%s)",
		     blockcipher_alg->cra_name) >= CRYPTO_MAX_ALG_NAME)
		goto err_free_inst;
	if (snprintf(inst->alg.base.cra_driver_name, CRYPTO_MAX_ALG_NAME,
		     "hctr2_base(%s,%s)",
		     xctr_alg->base.cra_driver_name,
		     polyval_alg->base.cra_driver_name) >= CRYPTO_MAX_ALG_NAME)
		goto err_free_inst;

	inst->alg.base.cra_blocksize = BLOCKCIPHER_BLOCK_SIZE;
	inst->alg.base.cra_ctxsize = sizeof(struct hctr2_tfm_ctx) +
				     polyval_alg->statesize * 2;
	inst->alg.base.cra_alignmask = xctr_alg->base.cra_alignmask |
				       polyval_alg->base.cra_alignmask;
	/*
	 * The hash function is called twice, so it is weighted higher than the
	 * xctr and blockcipher.
	 */
	inst->alg.base.cra_priority = (2 * xctr_alg->base.cra_priority +
				       4 * polyval_alg->base.cra_priority +
				       blockcipher_alg->cra_priority) / 7;

	inst->alg.setkey = hctr2_setkey;
	inst->alg.encrypt = hctr2_encrypt;
	inst->alg.decrypt = hctr2_decrypt;
	inst->alg.init = hctr2_init_tfm;
	inst->alg.exit = hctr2_exit_tfm;
	inst->alg.min_keysize = crypto_skcipher_alg_min_keysize(xctr_alg);
	inst->alg.max_keysize = crypto_skcipher_alg_max_keysize(xctr_alg);
	inst->alg.ivsize = TWEAK_SIZE;

	inst->free = hctr2_free_instance;

	err = skcipher_register_instance(tmpl, inst);
	if (err) {
err_free_inst:
		hctr2_free_instance(inst);
	}
	return err;
}

static int hctr2_create_base(struct crypto_template *tmpl, struct rtattr **tb)
{
	const char *xctr_name;
	const char *polyval_name;

	xctr_name = crypto_attr_alg_name(tb[1]);
	if (IS_ERR(xctr_name))
		return PTR_ERR(xctr_name);

	polyval_name = crypto_attr_alg_name(tb[2]);
	if (IS_ERR(polyval_name))
		return PTR_ERR(polyval_name);

	return hctr2_create_common(tmpl, tb, xctr_name, polyval_name);
}

static int hctr2_create(struct crypto_template *tmpl, struct rtattr **tb)
{
	const char *blockcipher_name;
	char xctr_name[CRYPTO_MAX_ALG_NAME];

	blockcipher_name = crypto_attr_alg_name(tb[1]);
	if (IS_ERR(blockcipher_name))
		return PTR_ERR(blockcipher_name);

	if (snprintf(xctr_name, CRYPTO_MAX_ALG_NAME, "xctr(%s)",
		    blockcipher_name) >= CRYPTO_MAX_ALG_NAME)
		return -ENAMETOOLONG;

	return hctr2_create_common(tmpl, tb, xctr_name, "polyval");
}

static struct crypto_template hctr2_tmpls[] = {
	{
		/* hctr2_base(xctr_name, polyval_name) */
		.name = "hctr2_base",
		.create = hctr2_create_base,
		.module = THIS_MODULE,
	}, {
		/* hctr2(blockcipher_name) */
		.name = "hctr2",
		.create = hctr2_create,
		.module = THIS_MODULE,
	}
};

static int __init hctr2_module_init(void)
{
	return crypto_register_templates(hctr2_tmpls, ARRAY_SIZE(hctr2_tmpls));
}

static void __exit hctr2_module_exit(void)
{
	return crypto_unregister_templates(hctr2_tmpls,
					   ARRAY_SIZE(hctr2_tmpls));
}

subsys_initcall(hctr2_module_init);
module_exit(hctr2_module_exit);

MODULE_DESCRIPTION("HCTR2 length-preserving encryption mode");
MODULE_LICENSE("GPL v2");
MODULE_ALIAS_CRYPTO("hctr2");
MODULE_IMPORT_NS(CRYPTO_INTERNAL);
back to top