Revision 5314454ea3ff6fc746eaf71b9a7ceebed52888fa authored by Jan Kara on 18 October 2021, 22:15:39 UTC, committed by Linus Torvalds on 19 October 2021, 06:22:03 UTC
Commit 6dbf7bb55598 ("fs: Don't invalidate page buffers in
block_write_full_page()") uncovered a latent bug in ocfs2 conversion
from inline inode format to a normal inode format.

The code in ocfs2_convert_inline_data_to_extents() attempts to zero out
the whole cluster allocated for file data by grabbing, zeroing, and
dirtying all pages covering this cluster.  However these pages are
beyond i_size, thus writeback code generally ignores these dirty pages
and no blocks were ever actually zeroed on the disk.

This oversight was fixed by commit 693c241a5f6a ("ocfs2: No need to zero
pages past i_size.") for standard ocfs2 write path, inline conversion
path was apparently forgotten; the commit log also has a reasoning why
the zeroing actually is not needed.

After commit 6dbf7bb55598, things became worse as writeback code stopped
invalidating buffers on pages beyond i_size and thus these pages end up
with clean PageDirty bit but with buffers attached to these pages being
still dirty.  So when a file is converted from inline format, then
writeback triggers, and then the file is grown so that these pages
become valid, the invalid dirtiness state is preserved,
mark_buffer_dirty() does nothing on these pages (buffers are already
dirty) but page is never written back because it is clean.  So data
written to these pages is lost once pages are reclaimed.

Simple reproducer for the problem is:

  xfs_io -f -c "pwrite 0 2000" -c "pwrite 2000 2000" -c "fsync" \
    -c "pwrite 4000 2000" ocfs2_file

After unmounting and mounting the fs again, you can observe that end of
'ocfs2_file' has lost its contents.

Fix the problem by not doing the pointless zeroing during conversion
from inline format similarly as in the standard write path.

[akpm@linux-foundation.org: fix whitespace, per Joseph]

Link: https://lkml.kernel.org/r/20210930095405.21433-1-jack@suse.cz
Fixes: 6dbf7bb55598 ("fs: Don't invalidate page buffers in block_write_full_page()")
Signed-off-by: Jan Kara <jack@suse.cz>
Reviewed-by: Joseph Qi <joseph.qi@linux.alibaba.com>
Tested-by: Joseph Qi <joseph.qi@linux.alibaba.com>
Acked-by: Gang He <ghe@suse.com>
Cc: Mark Fasheh <mark@fasheh.com>
Cc: Joel Becker <jlbec@evilplan.org>
Cc: Junxiao Bi <junxiao.bi@oracle.com>
Cc: Changwei Ge <gechangwei@live.cn>
Cc: Jun Piao <piaojun@huawei.com>
Cc: "Markov, Andrey" <Markov.Andrey@Dell.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
1 parent a6a0251
Raw File
sbitmap.c
// SPDX-License-Identifier: GPL-2.0-only
/*
 * Copyright (C) 2016 Facebook
 * Copyright (C) 2013-2014 Jens Axboe
 */

#include <linux/sched.h>
#include <linux/random.h>
#include <linux/sbitmap.h>
#include <linux/seq_file.h>

static int init_alloc_hint(struct sbitmap *sb, gfp_t flags)
{
	unsigned depth = sb->depth;

	sb->alloc_hint = alloc_percpu_gfp(unsigned int, flags);
	if (!sb->alloc_hint)
		return -ENOMEM;

	if (depth && !sb->round_robin) {
		int i;

		for_each_possible_cpu(i)
			*per_cpu_ptr(sb->alloc_hint, i) = prandom_u32() % depth;
	}
	return 0;
}

static inline unsigned update_alloc_hint_before_get(struct sbitmap *sb,
						    unsigned int depth)
{
	unsigned hint;

	hint = this_cpu_read(*sb->alloc_hint);
	if (unlikely(hint >= depth)) {
		hint = depth ? prandom_u32() % depth : 0;
		this_cpu_write(*sb->alloc_hint, hint);
	}

	return hint;
}

static inline void update_alloc_hint_after_get(struct sbitmap *sb,
					       unsigned int depth,
					       unsigned int hint,
					       unsigned int nr)
{
	if (nr == -1) {
		/* If the map is full, a hint won't do us much good. */
		this_cpu_write(*sb->alloc_hint, 0);
	} else if (nr == hint || unlikely(sb->round_robin)) {
		/* Only update the hint if we used it. */
		hint = nr + 1;
		if (hint >= depth - 1)
			hint = 0;
		this_cpu_write(*sb->alloc_hint, hint);
	}
}

/*
 * See if we have deferred clears that we can batch move
 */
static inline bool sbitmap_deferred_clear(struct sbitmap_word *map)
{
	unsigned long mask;

	if (!READ_ONCE(map->cleared))
		return false;

	/*
	 * First get a stable cleared mask, setting the old mask to 0.
	 */
	mask = xchg(&map->cleared, 0);

	/*
	 * Now clear the masked bits in our free word
	 */
	atomic_long_andnot(mask, (atomic_long_t *)&map->word);
	BUILD_BUG_ON(sizeof(atomic_long_t) != sizeof(map->word));
	return true;
}

int sbitmap_init_node(struct sbitmap *sb, unsigned int depth, int shift,
		      gfp_t flags, int node, bool round_robin,
		      bool alloc_hint)
{
	unsigned int bits_per_word;
	unsigned int i;

	if (shift < 0)
		shift = sbitmap_calculate_shift(depth);

	bits_per_word = 1U << shift;
	if (bits_per_word > BITS_PER_LONG)
		return -EINVAL;

	sb->shift = shift;
	sb->depth = depth;
	sb->map_nr = DIV_ROUND_UP(sb->depth, bits_per_word);
	sb->round_robin = round_robin;

	if (depth == 0) {
		sb->map = NULL;
		return 0;
	}

	if (alloc_hint) {
		if (init_alloc_hint(sb, flags))
			return -ENOMEM;
	} else {
		sb->alloc_hint = NULL;
	}

	sb->map = kcalloc_node(sb->map_nr, sizeof(*sb->map), flags, node);
	if (!sb->map) {
		free_percpu(sb->alloc_hint);
		return -ENOMEM;
	}

	for (i = 0; i < sb->map_nr; i++) {
		sb->map[i].depth = min(depth, bits_per_word);
		depth -= sb->map[i].depth;
	}
	return 0;
}
EXPORT_SYMBOL_GPL(sbitmap_init_node);

void sbitmap_resize(struct sbitmap *sb, unsigned int depth)
{
	unsigned int bits_per_word = 1U << sb->shift;
	unsigned int i;

	for (i = 0; i < sb->map_nr; i++)
		sbitmap_deferred_clear(&sb->map[i]);

	sb->depth = depth;
	sb->map_nr = DIV_ROUND_UP(sb->depth, bits_per_word);

	for (i = 0; i < sb->map_nr; i++) {
		sb->map[i].depth = min(depth, bits_per_word);
		depth -= sb->map[i].depth;
	}
}
EXPORT_SYMBOL_GPL(sbitmap_resize);

static int __sbitmap_get_word(unsigned long *word, unsigned long depth,
			      unsigned int hint, bool wrap)
{
	int nr;

	/* don't wrap if starting from 0 */
	wrap = wrap && hint;

	while (1) {
		nr = find_next_zero_bit(word, depth, hint);
		if (unlikely(nr >= depth)) {
			/*
			 * We started with an offset, and we didn't reset the
			 * offset to 0 in a failure case, so start from 0 to
			 * exhaust the map.
			 */
			if (hint && wrap) {
				hint = 0;
				continue;
			}
			return -1;
		}

		if (!test_and_set_bit_lock(nr, word))
			break;

		hint = nr + 1;
		if (hint >= depth - 1)
			hint = 0;
	}

	return nr;
}

static int sbitmap_find_bit_in_index(struct sbitmap *sb, int index,
				     unsigned int alloc_hint)
{
	struct sbitmap_word *map = &sb->map[index];
	int nr;

	do {
		nr = __sbitmap_get_word(&map->word, map->depth, alloc_hint,
					!sb->round_robin);
		if (nr != -1)
			break;
		if (!sbitmap_deferred_clear(map))
			break;
	} while (1);

	return nr;
}

static int __sbitmap_get(struct sbitmap *sb, unsigned int alloc_hint)
{
	unsigned int i, index;
	int nr = -1;

	index = SB_NR_TO_INDEX(sb, alloc_hint);

	/*
	 * Unless we're doing round robin tag allocation, just use the
	 * alloc_hint to find the right word index. No point in looping
	 * twice in find_next_zero_bit() for that case.
	 */
	if (sb->round_robin)
		alloc_hint = SB_NR_TO_BIT(sb, alloc_hint);
	else
		alloc_hint = 0;

	for (i = 0; i < sb->map_nr; i++) {
		nr = sbitmap_find_bit_in_index(sb, index, alloc_hint);
		if (nr != -1) {
			nr += index << sb->shift;
			break;
		}

		/* Jump to next index. */
		alloc_hint = 0;
		if (++index >= sb->map_nr)
			index = 0;
	}

	return nr;
}

int sbitmap_get(struct sbitmap *sb)
{
	int nr;
	unsigned int hint, depth;

	if (WARN_ON_ONCE(unlikely(!sb->alloc_hint)))
		return -1;

	depth = READ_ONCE(sb->depth);
	hint = update_alloc_hint_before_get(sb, depth);
	nr = __sbitmap_get(sb, hint);
	update_alloc_hint_after_get(sb, depth, hint, nr);

	return nr;
}
EXPORT_SYMBOL_GPL(sbitmap_get);

static int __sbitmap_get_shallow(struct sbitmap *sb,
				 unsigned int alloc_hint,
				 unsigned long shallow_depth)
{
	unsigned int i, index;
	int nr = -1;

	index = SB_NR_TO_INDEX(sb, alloc_hint);

	for (i = 0; i < sb->map_nr; i++) {
again:
		nr = __sbitmap_get_word(&sb->map[index].word,
					min(sb->map[index].depth, shallow_depth),
					SB_NR_TO_BIT(sb, alloc_hint), true);
		if (nr != -1) {
			nr += index << sb->shift;
			break;
		}

		if (sbitmap_deferred_clear(&sb->map[index]))
			goto again;

		/* Jump to next index. */
		index++;
		alloc_hint = index << sb->shift;

		if (index >= sb->map_nr) {
			index = 0;
			alloc_hint = 0;
		}
	}

	return nr;
}

int sbitmap_get_shallow(struct sbitmap *sb, unsigned long shallow_depth)
{
	int nr;
	unsigned int hint, depth;

	if (WARN_ON_ONCE(unlikely(!sb->alloc_hint)))
		return -1;

	depth = READ_ONCE(sb->depth);
	hint = update_alloc_hint_before_get(sb, depth);
	nr = __sbitmap_get_shallow(sb, hint, shallow_depth);
	update_alloc_hint_after_get(sb, depth, hint, nr);

	return nr;
}
EXPORT_SYMBOL_GPL(sbitmap_get_shallow);

bool sbitmap_any_bit_set(const struct sbitmap *sb)
{
	unsigned int i;

	for (i = 0; i < sb->map_nr; i++) {
		if (sb->map[i].word & ~sb->map[i].cleared)
			return true;
	}
	return false;
}
EXPORT_SYMBOL_GPL(sbitmap_any_bit_set);

static unsigned int __sbitmap_weight(const struct sbitmap *sb, bool set)
{
	unsigned int i, weight = 0;

	for (i = 0; i < sb->map_nr; i++) {
		const struct sbitmap_word *word = &sb->map[i];

		if (set)
			weight += bitmap_weight(&word->word, word->depth);
		else
			weight += bitmap_weight(&word->cleared, word->depth);
	}
	return weight;
}

static unsigned int sbitmap_cleared(const struct sbitmap *sb)
{
	return __sbitmap_weight(sb, false);
}

unsigned int sbitmap_weight(const struct sbitmap *sb)
{
	return __sbitmap_weight(sb, true) - sbitmap_cleared(sb);
}
EXPORT_SYMBOL_GPL(sbitmap_weight);

void sbitmap_show(struct sbitmap *sb, struct seq_file *m)
{
	seq_printf(m, "depth=%u\n", sb->depth);
	seq_printf(m, "busy=%u\n", sbitmap_weight(sb));
	seq_printf(m, "cleared=%u\n", sbitmap_cleared(sb));
	seq_printf(m, "bits_per_word=%u\n", 1U << sb->shift);
	seq_printf(m, "map_nr=%u\n", sb->map_nr);
}
EXPORT_SYMBOL_GPL(sbitmap_show);

static inline void emit_byte(struct seq_file *m, unsigned int offset, u8 byte)
{
	if ((offset & 0xf) == 0) {
		if (offset != 0)
			seq_putc(m, '\n');
		seq_printf(m, "%08x:", offset);
	}
	if ((offset & 0x1) == 0)
		seq_putc(m, ' ');
	seq_printf(m, "%02x", byte);
}

void sbitmap_bitmap_show(struct sbitmap *sb, struct seq_file *m)
{
	u8 byte = 0;
	unsigned int byte_bits = 0;
	unsigned int offset = 0;
	int i;

	for (i = 0; i < sb->map_nr; i++) {
		unsigned long word = READ_ONCE(sb->map[i].word);
		unsigned long cleared = READ_ONCE(sb->map[i].cleared);
		unsigned int word_bits = READ_ONCE(sb->map[i].depth);

		word &= ~cleared;

		while (word_bits > 0) {
			unsigned int bits = min(8 - byte_bits, word_bits);

			byte |= (word & (BIT(bits) - 1)) << byte_bits;
			byte_bits += bits;
			if (byte_bits == 8) {
				emit_byte(m, offset, byte);
				byte = 0;
				byte_bits = 0;
				offset++;
			}
			word >>= bits;
			word_bits -= bits;
		}
	}
	if (byte_bits) {
		emit_byte(m, offset, byte);
		offset++;
	}
	if (offset)
		seq_putc(m, '\n');
}
EXPORT_SYMBOL_GPL(sbitmap_bitmap_show);

static unsigned int sbq_calc_wake_batch(struct sbitmap_queue *sbq,
					unsigned int depth)
{
	unsigned int wake_batch;
	unsigned int shallow_depth;

	/*
	 * For each batch, we wake up one queue. We need to make sure that our
	 * batch size is small enough that the full depth of the bitmap,
	 * potentially limited by a shallow depth, is enough to wake up all of
	 * the queues.
	 *
	 * Each full word of the bitmap has bits_per_word bits, and there might
	 * be a partial word. There are depth / bits_per_word full words and
	 * depth % bits_per_word bits left over. In bitwise arithmetic:
	 *
	 * bits_per_word = 1 << shift
	 * depth / bits_per_word = depth >> shift
	 * depth % bits_per_word = depth & ((1 << shift) - 1)
	 *
	 * Each word can be limited to sbq->min_shallow_depth bits.
	 */
	shallow_depth = min(1U << sbq->sb.shift, sbq->min_shallow_depth);
	depth = ((depth >> sbq->sb.shift) * shallow_depth +
		 min(depth & ((1U << sbq->sb.shift) - 1), shallow_depth));
	wake_batch = clamp_t(unsigned int, depth / SBQ_WAIT_QUEUES, 1,
			     SBQ_WAKE_BATCH);

	return wake_batch;
}

int sbitmap_queue_init_node(struct sbitmap_queue *sbq, unsigned int depth,
			    int shift, bool round_robin, gfp_t flags, int node)
{
	int ret;
	int i;

	ret = sbitmap_init_node(&sbq->sb, depth, shift, flags, node,
				round_robin, true);
	if (ret)
		return ret;

	sbq->min_shallow_depth = UINT_MAX;
	sbq->wake_batch = sbq_calc_wake_batch(sbq, depth);
	atomic_set(&sbq->wake_index, 0);
	atomic_set(&sbq->ws_active, 0);

	sbq->ws = kzalloc_node(SBQ_WAIT_QUEUES * sizeof(*sbq->ws), flags, node);
	if (!sbq->ws) {
		sbitmap_free(&sbq->sb);
		return -ENOMEM;
	}

	for (i = 0; i < SBQ_WAIT_QUEUES; i++) {
		init_waitqueue_head(&sbq->ws[i].wait);
		atomic_set(&sbq->ws[i].wait_cnt, sbq->wake_batch);
	}

	return 0;
}
EXPORT_SYMBOL_GPL(sbitmap_queue_init_node);

static void sbitmap_queue_update_wake_batch(struct sbitmap_queue *sbq,
					    unsigned int depth)
{
	unsigned int wake_batch = sbq_calc_wake_batch(sbq, depth);
	int i;

	if (sbq->wake_batch != wake_batch) {
		WRITE_ONCE(sbq->wake_batch, wake_batch);
		/*
		 * Pairs with the memory barrier in sbitmap_queue_wake_up()
		 * to ensure that the batch size is updated before the wait
		 * counts.
		 */
		smp_mb();
		for (i = 0; i < SBQ_WAIT_QUEUES; i++)
			atomic_set(&sbq->ws[i].wait_cnt, 1);
	}
}

void sbitmap_queue_resize(struct sbitmap_queue *sbq, unsigned int depth)
{
	sbitmap_queue_update_wake_batch(sbq, depth);
	sbitmap_resize(&sbq->sb, depth);
}
EXPORT_SYMBOL_GPL(sbitmap_queue_resize);

int __sbitmap_queue_get(struct sbitmap_queue *sbq)
{
	return sbitmap_get(&sbq->sb);
}
EXPORT_SYMBOL_GPL(__sbitmap_queue_get);

int __sbitmap_queue_get_shallow(struct sbitmap_queue *sbq,
				unsigned int shallow_depth)
{
	WARN_ON_ONCE(shallow_depth < sbq->min_shallow_depth);

	return sbitmap_get_shallow(&sbq->sb, shallow_depth);
}
EXPORT_SYMBOL_GPL(__sbitmap_queue_get_shallow);

void sbitmap_queue_min_shallow_depth(struct sbitmap_queue *sbq,
				     unsigned int min_shallow_depth)
{
	sbq->min_shallow_depth = min_shallow_depth;
	sbitmap_queue_update_wake_batch(sbq, sbq->sb.depth);
}
EXPORT_SYMBOL_GPL(sbitmap_queue_min_shallow_depth);

static struct sbq_wait_state *sbq_wake_ptr(struct sbitmap_queue *sbq)
{
	int i, wake_index;

	if (!atomic_read(&sbq->ws_active))
		return NULL;

	wake_index = atomic_read(&sbq->wake_index);
	for (i = 0; i < SBQ_WAIT_QUEUES; i++) {
		struct sbq_wait_state *ws = &sbq->ws[wake_index];

		if (waitqueue_active(&ws->wait)) {
			if (wake_index != atomic_read(&sbq->wake_index))
				atomic_set(&sbq->wake_index, wake_index);
			return ws;
		}

		wake_index = sbq_index_inc(wake_index);
	}

	return NULL;
}

static bool __sbq_wake_up(struct sbitmap_queue *sbq)
{
	struct sbq_wait_state *ws;
	unsigned int wake_batch;
	int wait_cnt;

	ws = sbq_wake_ptr(sbq);
	if (!ws)
		return false;

	wait_cnt = atomic_dec_return(&ws->wait_cnt);
	if (wait_cnt <= 0) {
		int ret;

		wake_batch = READ_ONCE(sbq->wake_batch);

		/*
		 * Pairs with the memory barrier in sbitmap_queue_resize() to
		 * ensure that we see the batch size update before the wait
		 * count is reset.
		 */
		smp_mb__before_atomic();

		/*
		 * For concurrent callers of this, the one that failed the
		 * atomic_cmpxhcg() race should call this function again
		 * to wakeup a new batch on a different 'ws'.
		 */
		ret = atomic_cmpxchg(&ws->wait_cnt, wait_cnt, wake_batch);
		if (ret == wait_cnt) {
			sbq_index_atomic_inc(&sbq->wake_index);
			wake_up_nr(&ws->wait, wake_batch);
			return false;
		}

		return true;
	}

	return false;
}

void sbitmap_queue_wake_up(struct sbitmap_queue *sbq)
{
	while (__sbq_wake_up(sbq))
		;
}
EXPORT_SYMBOL_GPL(sbitmap_queue_wake_up);

void sbitmap_queue_clear(struct sbitmap_queue *sbq, unsigned int nr,
			 unsigned int cpu)
{
	/*
	 * Once the clear bit is set, the bit may be allocated out.
	 *
	 * Orders READ/WRITE on the associated instance(such as request
	 * of blk_mq) by this bit for avoiding race with re-allocation,
	 * and its pair is the memory barrier implied in __sbitmap_get_word.
	 *
	 * One invariant is that the clear bit has to be zero when the bit
	 * is in use.
	 */
	smp_mb__before_atomic();
	sbitmap_deferred_clear_bit(&sbq->sb, nr);

	/*
	 * Pairs with the memory barrier in set_current_state() to ensure the
	 * proper ordering of clear_bit_unlock()/waitqueue_active() in the waker
	 * and test_and_set_bit_lock()/prepare_to_wait()/finish_wait() in the
	 * waiter. See the comment on waitqueue_active().
	 */
	smp_mb__after_atomic();
	sbitmap_queue_wake_up(sbq);

	if (likely(!sbq->sb.round_robin && nr < sbq->sb.depth))
		*per_cpu_ptr(sbq->sb.alloc_hint, cpu) = nr;
}
EXPORT_SYMBOL_GPL(sbitmap_queue_clear);

void sbitmap_queue_wake_all(struct sbitmap_queue *sbq)
{
	int i, wake_index;

	/*
	 * Pairs with the memory barrier in set_current_state() like in
	 * sbitmap_queue_wake_up().
	 */
	smp_mb();
	wake_index = atomic_read(&sbq->wake_index);
	for (i = 0; i < SBQ_WAIT_QUEUES; i++) {
		struct sbq_wait_state *ws = &sbq->ws[wake_index];

		if (waitqueue_active(&ws->wait))
			wake_up(&ws->wait);

		wake_index = sbq_index_inc(wake_index);
	}
}
EXPORT_SYMBOL_GPL(sbitmap_queue_wake_all);

void sbitmap_queue_show(struct sbitmap_queue *sbq, struct seq_file *m)
{
	bool first;
	int i;

	sbitmap_show(&sbq->sb, m);

	seq_puts(m, "alloc_hint={");
	first = true;
	for_each_possible_cpu(i) {
		if (!first)
			seq_puts(m, ", ");
		first = false;
		seq_printf(m, "%u", *per_cpu_ptr(sbq->sb.alloc_hint, i));
	}
	seq_puts(m, "}\n");

	seq_printf(m, "wake_batch=%u\n", sbq->wake_batch);
	seq_printf(m, "wake_index=%d\n", atomic_read(&sbq->wake_index));
	seq_printf(m, "ws_active=%d\n", atomic_read(&sbq->ws_active));

	seq_puts(m, "ws={\n");
	for (i = 0; i < SBQ_WAIT_QUEUES; i++) {
		struct sbq_wait_state *ws = &sbq->ws[i];

		seq_printf(m, "\t{.wait_cnt=%d, .wait=%s},\n",
			   atomic_read(&ws->wait_cnt),
			   waitqueue_active(&ws->wait) ? "active" : "inactive");
	}
	seq_puts(m, "}\n");

	seq_printf(m, "round_robin=%d\n", sbq->sb.round_robin);
	seq_printf(m, "min_shallow_depth=%u\n", sbq->min_shallow_depth);
}
EXPORT_SYMBOL_GPL(sbitmap_queue_show);

void sbitmap_add_wait_queue(struct sbitmap_queue *sbq,
			    struct sbq_wait_state *ws,
			    struct sbq_wait *sbq_wait)
{
	if (!sbq_wait->sbq) {
		sbq_wait->sbq = sbq;
		atomic_inc(&sbq->ws_active);
		add_wait_queue(&ws->wait, &sbq_wait->wait);
	}
}
EXPORT_SYMBOL_GPL(sbitmap_add_wait_queue);

void sbitmap_del_wait_queue(struct sbq_wait *sbq_wait)
{
	list_del_init(&sbq_wait->wait.entry);
	if (sbq_wait->sbq) {
		atomic_dec(&sbq_wait->sbq->ws_active);
		sbq_wait->sbq = NULL;
	}
}
EXPORT_SYMBOL_GPL(sbitmap_del_wait_queue);

void sbitmap_prepare_to_wait(struct sbitmap_queue *sbq,
			     struct sbq_wait_state *ws,
			     struct sbq_wait *sbq_wait, int state)
{
	if (!sbq_wait->sbq) {
		atomic_inc(&sbq->ws_active);
		sbq_wait->sbq = sbq;
	}
	prepare_to_wait_exclusive(&ws->wait, &sbq_wait->wait, state);
}
EXPORT_SYMBOL_GPL(sbitmap_prepare_to_wait);

void sbitmap_finish_wait(struct sbitmap_queue *sbq, struct sbq_wait_state *ws,
			 struct sbq_wait *sbq_wait)
{
	finish_wait(&ws->wait, &sbq_wait->wait);
	if (sbq_wait->sbq) {
		atomic_dec(&sbq->ws_active);
		sbq_wait->sbq = NULL;
	}
}
EXPORT_SYMBOL_GPL(sbitmap_finish_wait);
back to top