Skip to main content
  • Home
  • Development
  • Documentation
  • Donate
  • Operational login
  • Browse the archive

swh logo
SoftwareHeritage
Software
Heritage
Archive
Features
  • Search

  • Downloads

  • Save code now

  • Add forge now

  • Help

Revision 54c9cfef4a209b138a01e7548b96687ad92a8b7d authored by Maarten Derickx on 19 December 2024, 10:54:44 UTC, committed by Maarten Derickx on 19 December 2024, 10:54:44 UTC
Fix spacing issues
1 parent d124129
  • Files
  • Changes
  • 04cba2a
  • /
  • X_1_n.m
Raw File Download
Permalinks

To reference or cite the objects present in the Software Heritage archive, permalinks based on SoftWare Hash IDentifiers (SWHIDs) must be used.
Select below a type of object currently browsed in order to display its associated SWHID and permalink.

  • revision
  • directory
  • content
revision badge
swh:1:rev:54c9cfef4a209b138a01e7548b96687ad92a8b7d
directory badge Iframe embedding
swh:1:dir:04cba2af2c05bdc3772529332c584c5b2eff8598
content badge Iframe embedding
swh:1:cnt:fff051f98a6689eb45f9f6c8936ff97dc81d7929
Citations

This interface enables to generate software citations, provided that the root directory of browsed objects contains a citation.cff or codemeta.json file.
Select below a type of object currently browsed in order to generate citations for them.

  • revision
  • directory
  • content
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
X_1_n.m

function X_1_n(n,base_ring : equation_directory:="models_X1_n")
//Input: n - integer
//       base_ring - a ring
//       equation_directory - directory with files FFFc<n>.txt containing models
//Output: C - a curve
//Returns an algebraic model C of the modular curve X_1(m,n) as a curve over base_ring

    n_str := IntegerToString(n);
    file_name := equation_directory cat "/FFFc" cat n_str cat ".txt";
    data := Read(file_name);

    A<x,y> := AffineSpace(base_ring,2);
    X := eval(data);
    C := Curve(A,X);
    return ProjectiveClosure(C);
end function;

function Functions_xyrsbcF2F3(curve)
    //Input: curve - the modular curve X_1(N) as returned by the function X_1
    //Output: x,y,r,s,b,c,F2,F3 - The modular units as in http://arxiv.org/pdf/1307.5719v1.pdf
    FF := FunctionField(curve);
    x := FF.1;
    y := FF.2;
    r := (x^2*y-x*y+y-1)/x/(x*y-1);
    s := (x*y-y+1)/x/y;
    b := r*s*(r-1);
    c := s*(r-1);
    F3 := b;
    F2 := b/(16*b^2+(1-20*c-8*c^2)*b + c*(c-1)^3);
    return x,y,r,s,b,c,F2,F3;
end function;

function X_1_n_jInvariant(curve)
    x,y,r,s,b,c,F2,F3 := Functions_xyrsbcF2F3(curve);
    jNum := 4096*b^6 - 6144*b^5*c^2 - 6144*b^5*c + 12288*b^5 + 3840*b^4*c^4 + 3072*b^4*c^3 - 4608*b^4*c^2 - 15360*b^4*c + 13056*b^4 
    - 1280*b^3*c^6 + 768*b^3*c^5 + 1536*b^3*c^4 - 2048*b^3*c^3 + 8448*b^3*c^2 - 13056*b^3*c + 5632*b^3 + 240*b^2*c^8 - 
    768*b^2*c^7 + 384*b^2*c^6 + 384*b^2*c^5 + 2400*b^2*c^4 - 7680*b^2*c^3 + 8448*b^2*c^2 - 4224*b^2*c + 816*b^2 - 
    24*b*c^10 + 168*b*c^9 - 432*b*c^8 + 288*b*c^7 + 1008*b*c^6 - 3024*b*c^5 + 4032*b*c^4 - 3168*b*c^3 + 1512*b*c^2 - 
    408*b*c + 48*b + c^12 - 12*c^11 + 66*c^10 - 220*c^9 + 495*c^8 - 792*c^7 + 924*c^6 - 792*c^5 + 495*c^4 - 220*c^3 + 
    66*c^2 - 12*c + 1;
    jDen := 16*b^5 - 8*b^4*c^2 - 20*b^4*c + b^4 + b^3*c^4 - 3*b^3*c^3 + 3*b^3*c^2 - b^3*c;
    return jNum/jDen;
end function;


function TateNormalForm_bc(E,P);
//Return the b,c of the tate normal form of (E,P) as in equation (2) of http://arxiv.org/pdf/1307.5719v1.pdf
    assert P[3] eq 1;
    x0:=P[1];
    y0:=P[2];

    a1,a2,a3,a4,a6:=Explode(aInvariants(E));
    aa1:=a1;
    aa3:=2*y0+a3+a1*x0;
    aa2:=3*x0+a2;
    aa4:=3*x0^2+2*x0*a2+a4-a1*y0;

    aaa1:=2*aa4/aa3+aa1;
    aaa3:=aa3;
    aaa2:=aa2-(aa4/aa3)^2-aa1*aa4/aa3;


    b:=-aaa2^3/aaa3^2;
    c:=-(aaa1*aaa2-aaa3)/aaa3;
    return [b,c];
end function;

function TateNormalForm_xy(E,P);
//return the x,y of the tate normal form of (E,P) as in section 2.1 http://arxiv.org/pdf/1307.5719v1.pdf
    b,c := Explode(TateNormalForm_bc(E,P));
    r := b/c;
    s := c^2/(b-c);
    t := (r*s-2*r+1);
    x := (s-r)/t;
    y := t/(s^2-s-r+1);
    return [x,y];
end function;

function EllipticCurveFromX1Place(P);
//Returns the associated elliptic curve corresponding to a place on X1N
//the elliptic curve is guaranteed to be in tate normal form, so that
//0,0 is the point of order N. The point 0,0 is returned as optional second element
    X1N := Curve(P);
    x,y,r,s,b,c,F2,F3:=Functions_xyrsbcF2F3(X1N);
    bP:=Evaluate(b,P);
    cP:=Evaluate(c,P);
    E:=EllipticCurve([1-cP,-bP,-bP,0,0]);
    return E, E ! [0,0];
end function;

function X1PlaceFromEllipticCurve(X1N, E, P)
//Returns a place on X_1(N) given an elliptic curve and a point of order N
    K := BaseRing(E);
    xy := TateNormalForm_xy(E,P);
    dP := Places(X1N(K) ! xy);
    assert #dP eq 1;
    return dP[1];
end function;

function ElementsUpToFrobenius(F)
  orbits := {{Frobenius(x,i) : i in [1..Degree(F)]}: x in F};
  return [Random(orbit) : orbit in orbits];
end function;

function EllipticCurvesOverField(F)
  return &cat[Twists(EllipticCurveFromjInvariant(j)) : j in F];
end function;

function EllipticCurvesOverFieldUpToFrobenius(F)
  return &cat[Twists(EllipticCurveFromjInvariant(j)) : j in ElementsUpToFrobenius(F)];
end function;

function EllipticCurvesWithPointOverFieldUpToFrobeniusAndDiamond(p,i,N)
  assert IsSquarefree(N);
  F := GF(p,i);
  ECs := [E: E in EllipticCurvesOverFieldUpToFrobenius(F) | (#E(F) mod N) eq 0];
  ECs_with_point := [];
  for E in ECs do
    gens := [P*(Order(P) div N) : P in Generators(E(F)) | (Order(P) mod N) eq 0];
    assert #gens eq 1;
    Append(~ECs_with_point,<E,gens[1]>);
  end for;
  return ECs_with_point;
end function;


function NonCuspidalPlacesUpToDiamond(C,i,N)
  assert IsSquarefree(N);
  p := Characteristic(BaseRing(C));
  F := GF(p,i);
  ECs := [E: E in EllipticCurvesOverFieldUpToFrobenius(F) | (#E(F) mod N) eq 0];
  places := [];
  for E in ECs do
    gens := [P*(Order(P) div N) : P in Generators(E(F)) | (Order(P) mod N) eq 0];
    assert #gens eq 1;
    time Append(~places,X1PlaceFromEllipticCurve(C,E,gens[1]));
  end for;
  return places;
end function;

The diff you're trying to view is too large. Only the first 1000 changed files have been loaded.
Showing with 0 additions and 0 deletions (0 / 0 diffs computed)
swh spinner

Computing file changes ...

Software Heritage — Copyright (C) 2015–2025, The Software Heritage developers. License: GNU AGPLv3+.
The source code of Software Heritage itself is available on our development forge.
The source code files archived by Software Heritage are available under their own copyright and licenses.
Terms of use: Archive access, API— Contact— JavaScript license information— Web API

back to top