Skip to main content
  • Home
  • Development
  • Documentation
  • Donate
  • Operational login
  • Browse the archive

swh logo
SoftwareHeritage
Software
Heritage
Archive
Features
  • Search

  • Downloads

  • Save code now

  • Add forge now

  • Help

Revision 54c9cfef4a209b138a01e7548b96687ad92a8b7d authored by Maarten Derickx on 19 December 2024, 10:54:44 UTC, committed by Maarten Derickx on 19 December 2024, 10:54:44 UTC
Fix spacing issues
1 parent d124129
  • Files
  • Changes
  • 04cba2a
  • /
  • assorted_functions.m
Raw File Download
Permalinks

To reference or cite the objects present in the Software Heritage archive, permalinks based on SoftWare Hash IDentifiers (SWHIDs) must be used.
Select below a type of object currently browsed in order to display its associated SWHID and permalink.

  • revision
  • directory
  • content
revision badge
swh:1:rev:54c9cfef4a209b138a01e7548b96687ad92a8b7d
directory badge Iframe embedding
swh:1:dir:04cba2af2c05bdc3772529332c584c5b2eff8598
content badge Iframe embedding
swh:1:cnt:dc016bd0974c34818effe9dd7f7f97ac9e0b6799
Citations

This interface enables to generate software citations, provided that the root directory of browsed objects contains a citation.cff or codemeta.json file.
Select below a type of object currently browsed in order to generate citations for them.

  • revision
  • directory
  • content
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
assorted_functions.m
load "hecke_operators.m";
Attach("X1_N_equations.m");
import "X1_N_equations.m": equations, gonality_upperbound;



function FunctionDegrees(divisor)
//{On input a divisor returns a list containing the degrees of all the non constant 
//functions in the RiemannRochspace of the divisor
//}
    constantField := BaseRing(Curve(divisor));
    space,map := RiemannRochSpace(divisor);
    return [Degree(map(i)) : i in space | map(i) notin constantField];
end function;

function SmallestCoprimePrime(N);
//{Returns the smallest prime that is coprime to the input integer.}
    for i in [1..N] do;
        p := NthPrime(i);
        if not N mod p eq 0 then;
            return p;
        end if;
    end for;
end function;


function DivisorSumsOfDegreeType(degree_type,divisors_by_degree)
    divisors := &cat divisors_by_degree;
    ZZdiv := FreeAbelianGroup(#divisors);
    divisors_of_degtype := {ZZdiv ! 0};
    for degree in degree_type do;
        divisors_of_degtype := {d+ZZdiv.Index(divisors,i) : 
                               d in divisors_of_degtype, i in divisors_by_degree[degree]};
    end for;
    return divisors_of_degtype; 
end function;


function X_1(N,base_ring)
    //Input: N - an integer
    //       base_ring - a ring
    //Output: C - a curve
    //Returns an algebraic model C of the modular curve X_1(N) as a curve over base_ring
    //The model is such that FunctionField(C).1 = x and FunctionField(C).2 = y
    //where x,y are as in section 2.1 of http://arxiv.org/pdf/1307.5719v1.pdf
    C:=Curve(Spec(ChangeRing(Parent(equations[N]),base_ring)),equations[N]);
    return ProjectiveClosure(C);
end function;



function Cusp_GalQ_orbit_to_signature(cusp);
    //Input: cusp - a Place of X_1(N) that is a cusp
    //Output: [n1,n2] - integers n1 and n2 are the valuations of F2 and F3 resp
    //[n1,n2] is called the signature of cusp since it uniquely determines the galois orbit
    //over Q of (a lift of) this cusp. Note that this function still works if cusps is defined over a field of characteristic > 0. 
    C := Curve(cusp);
    x,y,r,s,b,c,F2,F3 := Functions_xyrsbcF2F3(C);
    return [Valuation(F2,Support(1*cusp)[1]),Valuation(F3,Support(1*cusp)[1])];
end function;

function Cusps_X1(curve)
    //Input: curve - the modular curve X_1(N) as returned by the function X_1
    //Output: places - a Set containing all places of X_1(N) that are cusps
    x,y,r,s,b,c,F2,F3 := Functions_xyrsbcF2F3(curve);
    return SequenceToSet(Support(Divisor(F2)) cat Support(Divisor(F3)) cat Support(Divisor(x)) cat Support(Divisor(x)));
end function;

function IsCusp(P);
//Given a point on X_1(N) returns whether this point is a cusp
    X1N := Curve(P);
    x,y,r,s,b,c,F2,F3:=Functions_xyrsbcF2F3(X1N);
    if Valuation(b,P) lt 0 or Valuation(c,P) lt 0 then;
      return true;
    end if;
    bP:=Evaluate(b,P);
    cP:=Evaluate(c,P);
    return bP^3 * (cP^4 - 8*bP*cP^2 - 3*cP^3 + 16*bP^2 - 20*bP*cP + 3*cP^2 + bP - cP) eq 0;
end function;

function Cusp_GalQ_orbits_dict(curve,cusps)
    //Input: curve - the modular curve X_1(N) as returned by the function X_1
    //       cusps - the set of cusps as returned by Cusps_X1
    //Output: cusp_dict - a dictionary/AssociativeArray that contains
    x,y,r,s,b,c,F2,F3 := Functions_xyrsbcF2F3(curve);
    cusp_dict := AssociativeArray(Universe([[1]]));
    for cusp in cusps do;
        signature := [Valuation(F2,cusp),Valuation(F3,cusp)];
        if IsDefined(cusp_dict,signature) then;
            Append(~cusp_dict[signature],cusp);
        else
            cusp_dict[signature] := [cusp];
        end if;
    end for;
    return cusp_dict;
end function;

function Cusp_GalQ_orbits(curve,cusps)
    cusp_dict := Cusp_GalQ_orbits_dict(curve,cusps);
    return [1*(&+cusp_dict[i]) : i in Keys(cusp_dict)];
end function;

function ClassSubgroup(given_divisors,Grp,m1,m2);    
    M := FreeAbelianGroup( #given_divisors );
    f := hom< M -> Grp | [m2(i) : i in given_divisors] >;
    N := Kernel(f);
    N := Lattice( Matrix( [ Eltseq(M ! i) : i in Generators(N)] ) );
    subgroup := Image(f);
    return N,subgroup,f;
end function;

function DivisorAsSumOfGivenDivisors(D,N,subgroup,f,m2);
    //Grp,m1,m2:=ClassGroup(Curve(D));
    if m2(D) notin subgroup then;
        return [0];
    end if;
    fInvD:=Vector(Eltseq((f^(-1))(m2(D))));
    v:=ClosestVectors(N,Vector(fInvD) : Max:=1)[1];
    fInvD:=Eltseq(fInvD-v); //now fInvD should be shorter, making compuations faster
    return fInvD;
end function;

function DivisorsOfDegreeType(degree_type,curve);
    divisors_old:={DivisorGroup(curve) ! 0};
    divisors_new:=divisors_old;
    for d in degree_type do;
        divisors_new:={D1+D2 : D1 in divisors_old, D2 in Places(curve,d)};
        divisors_old:=divisors_new;
    end for;
    return divisors_new;
end function;





function DegreeTypesNonCuspidal_of_Degree(degree,cusps,curve)
    occurring_degrees := {i : i in [1..degree] | 
                    HasPlace(curve,i) and not &and[i in cusps : i in Places(curve,degree)] };
    return RestrictedPartitions(degree,occurring_degrees);
end function;

function DegreeTypesNonCuspidal_up_to_Degree(degree,cusps,curve)
    return &cat[DegreeTypesNonCuspidal_of_Degree(d,cusps,curve) : d in [1..degree]];
end function;

function DegreeTypesCuspidal_of_Degree(degree,cusps)
    occurring_degrees := {Degree(c) : c in cusps};
    return RestrictedPartitions(degree,occurring_degrees);
end function;

function DegreeTypesCuspidal_up_to_Degree(degree,cusps)
    return &cat[DegreeTypesCuspidal_of_Degree(d,cusps) : d in [1..degree]];
end function;

function NonCuspidalPlaces(degree,curve)
    return [p : p in Places(curve,degree) | not IsCusp(p)];
end function;

function CuspidalPlaces(degree,cusps)
    return [p : p in cusps | Degree(p) eq degree];
end function;

function NonCuspidalDivisorsOfDegreeType(degree_type,cusps,curve)
    divisors_old:={DivisorGroup(curve) ! 0};
    divisors_new:=divisors_old;
    for d in degree_type do;
        divisors_new:={D1+D2 : D1 in divisors_old, D2 in NonCuspidalPlaces(d,curve)};
        divisors_old:=divisors_new;
    end for;
    return divisors_new;
end function;

function CuspidalDivisorsOfDegreeType(degree_type,cusps,curve)
    divisors_old:={DivisorGroup(curve) ! 0};
    divisors_new:=divisors_old;
    for d in degree_type do;
        divisors_new:={D1+D2 : D1 in divisors_old, D2 in CuspidalPlaces(d,cusps)};
        divisors_old:=divisors_new;
    end for;
    return divisors_new;
end function;


function NonCuspidalDivisorsOfDegree(degree,cusps,curve)
    return &join[NonCuspidalDivisorsOfDegreeType(degree_type,cusps,curve) : degree_type in DegreeTypesNonCuspidal_of_Degree(degree,cusps,curve)];
end function;

function CuspidalDivisorsOfDegree(degree,cusps,curve)
    return &join[CuspidalDivisorsOfDegreeType(degree_type,cusps,curve) : degree_type in DegreeTypesCuspidal_of_Degree(degree,cusps)];
end function;
    



function CuspSignatureMultiplicitiesToDivisor(cusp_signatures,multiplicities,orbit_dict)
    return &+[multiplicities[i]*(&+orbit_dict[cusp_signatures[i]]) : i in [1..#cusp_signatures]];
end function;

function FilterCandidates(curve,cusp_signatures,candidates)
    orbit_dict := Cusp_GalQ_orbits_dict(curve,Cusps_X1(curve));
    //print Keys(orbit_dict);
    //print cusp_signatures;
    survivors := [];
    for multiplicities in candidates do;
        D := CuspSignatureMultiplicitiesToDivisor(cusp_signatures,multiplicities,orbit_dict);
        if Dimension(D) ge 1 then;
            Append(~survivors,multiplicities);
        end if;
    end for;
    return survivors;
end function;

function CuspidalClassgroupModp(N,p);
    X1modp := X_1(N,GF(p));
    Grp,m1,m2 := ClassGroup(X1modp);
    cusps := Cusps_X1(X1modp);
    cusp_orbits := Cusp_GalQ_orbits(X1modp,cusps);
    return sub<Grp |[ m2(c) : c in cusp_orbits]>;
end function;

function Main2(N : d:=0, write_results_to_file := false);
    p:=2;
    for i in PrimesInInterval(2,20) do;
        if (N mod i) ne 0 then;
            p:=i;
            break;
        end if;
    end for;
    X1modp := X_1(N,GF(p));
    if d eq 0 then;
        gon := gonality_upperbound[N];
    else;
        gon := d;
    end if;
    Grp,m1,m2 := ClassGroup(X1modp);
    cusps := Cusps_X1(X1modp);
    cusp_orbits := Cusp_GalQ_orbits(X1modp,cusps);
    cusp_signatures := [Cusp_GalQ_orbit_to_signature(cusp) : cusp in cusp_orbits];
    if write_results_to_file then;
        PrintFile("data/cusp_signatures_" cat IntegerToString(N), cusp_signatures : Overwrite:=true);
    end if;
    non_cusps_by_degree := [NonCuspidalPlaces(d,X1modp) : d in [1..gon-1]];
    non_cusps := &cat non_cusps_by_degree;
    //print "non_cusps", #non_cusps;
    if #non_cusps eq 0 then;
        return cusp_signatures,[[] : degree in [1..gon-1]];
    end if;
    non_cusp_degrees := [Degree(P) : P in non_cusps];
    
    modular_units,CuspGrp,f := ClassSubgroup(cusp_orbits,Grp,m1,m2);
    //non_cusp_functions,NonCuspGrp,f2 := ClassSubgroup(non_cusps,Grp,m1,m2);
    M := FreeAbelianGroup( #non_cusps );
    f2 := hom< M -> Grp | [m2(i) : i in non_cusps] >;
    
    ZZnoncusps := Domain(f2);
    candidates := [];
    for degree in [1..gon-1] do;
        Append(~candidates,[]);
        degree_types := RestrictedPartitions(degree,SequenceToSet(non_cusp_degrees));
        for degree_type in degree_types do;
            for D in DivisorSumsOfDegreeType(degree_type,non_cusps_by_degree) do;
                if f2(D) in CuspGrp then;
                    fInvD:=Vector(Eltseq((f^(-1))(f2(D))));
                    v:=ClosestVectors(modular_units,Vector(fInvD) : Max:=1)[1];
                    fInvD:=Eltseq(fInvD-v); //now fInvD should be shorter, making compuations faster
                    Append(~candidates[degree],fInvD);
                end if;
            end for;
        end for;
    if write_results_to_file then;
            PrintFile("data/candidates_" cat IntegerToString(N) cat "_" cat IntegerToString(degree), candidates[degree] : Overwrite:=true);
        end if;
    end for;
    
    return cusp_signatures,candidates;
end function;
The diff you're trying to view is too large. Only the first 1000 changed files have been loaded.
Showing with 0 additions and 0 deletions (0 / 0 diffs computed)
swh spinner

Computing file changes ...

Software Heritage — Copyright (C) 2015–2025, The Software Heritage developers. License: GNU AGPLv3+.
The source code of Software Heritage itself is available on our development forge.
The source code files archived by Software Heritage are available under their own copyright and licenses.
Terms of use: Archive access, API— Contact— JavaScript license information— Web API

back to top