Skip to main content
  • Home
  • Development
  • Documentation
  • Donate
  • Operational login
  • Browse the archive

swh logo
SoftwareHeritage
Software
Heritage
Archive
Features
  • Search

  • Downloads

  • Save code now

  • Add forge now

  • Help

Revision 54c9cfef4a209b138a01e7548b96687ad92a8b7d authored by Maarten Derickx on 19 December 2024, 10:54:44 UTC, committed by Maarten Derickx on 19 December 2024, 10:54:44 UTC
Fix spacing issues
1 parent d124129
  • Files
  • Changes
  • 04cba2a
  • /
  • hecke_operators.m
Raw File Download
Permalinks

To reference or cite the objects present in the Software Heritage archive, permalinks based on SoftWare Hash IDentifiers (SWHIDs) must be used.
Select below a type of object currently browsed in order to display its associated SWHID and permalink.

  • revision
  • directory
  • content
revision badge
swh:1:rev:54c9cfef4a209b138a01e7548b96687ad92a8b7d
directory badge Iframe embedding
swh:1:dir:04cba2af2c05bdc3772529332c584c5b2eff8598
content badge Iframe embedding
swh:1:cnt:0125922021abc585b44f7a2d00a18536208ebe0c
Citations

This interface enables to generate software citations, provided that the root directory of browsed objects contains a citation.cff or codemeta.json file.
Select below a type of object currently browsed in order to generate citations for them.

  • revision
  • directory
  • content
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
hecke_operators.m
load "X_1_n.m";

function pIsogeniesFiniteField1(E,p);
//Returns the p+1 elliptic curves that are p-isogenous to an initial E
//curve defined over a finite field
//Raises an error in characteristic 2,3 or if E is supersingular 
    Fq := BaseRing(E);
    jE := jInvariant(E);
    fp := ClassicalModularPolynomial(p);
    fp := ChangeRing(Parent(fp),Fq) ! fp;
    fpjE := UnivariatePolynomial(Evaluate(fp,2,jE));
    Fqn := SplittingField(fpjE);
    
    A2 := AffineSpace(Fqn,2);
    X0p := ModularCurve(A2,"Canonical",p);
    mp := ModuliPoints(X0p,BaseChange(E,Fqn));
    assert #mp eq p+1;
    return [Isogeny(BaseChange(E,Fqn),x) : x in mp];
end function;

function pIsogeniesFiniteField(E,p);
//Returns the p+1 elliptic curves that are p-isogenous to an initial E
//curve defined over a finite field
    assert IsPrime(p);
    //assert p ne 2; 
    Fq := BaseRing(E);
    fp := DivisionPolynomial(E,p);
    Fqn := SplittingField(fp);
    Fq2n := RandomExtension(Fqn, 2);
    xi := Roots(ChangeRing(fp,Fq2n));
    Eq2n := BaseChange(E,Fq2n);
    fE := DefiningEquation(Eq2n);
    yi := [Roots(UnivariatePolynomial(Evaluate(Evaluate(fE,3,1),1,x[1])))[1][1] : x in xi];
    Pi := [E(Fq2n) ! [xi[i][1],yi[i]] : i in [1..#xi]];
    //now Pi is a list with all torsion points
    
    R<X> := PolynomialRing(Fq2n);
    kernel_polynomials := {&*[X-(j*P)[1] : j in [1..Ceiling((p-1)/2)]] : P in Pi};
    isogenies := [PowerStructure(MapSch) | ];
    for f in kernel_polynomials do;
        Ef,phi := IsogenyFromKernel(Eq2n,f);

        Append(~isogenies,phi);
    end for;
    return isogenies;
end function;



function TateNormalForm_bc(E,P);
//Return the b,c of the tate normal form of (E,P) as in equation (2) of http://arxiv.org/pdf/1307.5719v1.pdf
    assert P[3] eq 1;
    x0:=P[1];
    y0:=P[2];

    a1,a2,a3,a4,a6:=Explode(aInvariants(E));
    aa1:=a1;
    aa3:=2*y0+a3+a1*x0;
    aa2:=3*x0+a2;
    aa4:=3*x0^2+2*x0*a2+a4-a1*y0;

    aaa1:=2*aa4/aa3+aa1;
    aaa3:=aa3;
    aaa2:=aa2-(aa4/aa3)^2-aa1*aa4/aa3;


    b:=-aaa2^3/aaa3^2;
    c:=-(aaa1*aaa2-aaa3)/aaa3;
    return [b,c];
end function;

function TateNormalForm_xy(E,P);
//return the x,y of the tate normal form of (E,P) as in section 2.1 http://arxiv.org/pdf/1307.5719v1.pdf
    b,c := Explode(TateNormalForm_bc(E,P));
    r := b/c;
    s := c^2/(b-c);
    t := (r*s-2*r+1);
    x := (s-r)/t;
    y := t/(s^2-s-r+1);
    return [x,y];
end function;


function MyMultiset(itterable);
    uniques := [];
    for i in itterable do;
        if i notin uniques then;
            Append(~uniques,i);
        end if;
    end for;
    
    return [<j,#[1 : i in itterable | i eq j]> : j in uniques];
end function;

function Tp_X1N_noncuspidal_place(P,p);
    assert IsPrime(p);
    ZZ := IntegerRing();
    E := EllipticCurveFromX1Place(P);
    X1N := Curve(P);
    assert Characteristic(BaseRing(X1N)) ne p;
    isogenies := pIsogeniesFiniteField(E,p);
    Eq2n := Domain(isogenies[1]);
    Fq2n := BaseRing(Eq2n);

    Pi := [<Codomain(phi),phi(Eq2n ! [0,0])> : phi in isogenies];
    xyi := [TateNormalForm_xy(P[1],P[2]) : P in Pi];
    places := [Places(X1N(Fq2n) ! xy) : xy in xyi];
    assert &and[#p eq 1 :  p in places];
    places := MyMultiset(&cat places);
    d := Degree(P);
    return &+[ (ZZ ! (place[2]*d/Degree(place[1])))*place[1] : place in places]; 
end function;

function Tp_X1N_noncuspidal(D,p);
  P,e := Support(D);
  return &+[e[i]*Tp_X1N_noncuspidal_place(P[i],p) : i in [1..#P]]; 
end function;

function diamond_operator_X1N_noncuspidal_place(P,d);
    E := EllipticCurveFromX1Place(P);
    X1N := Curve(P);
    Fq := BaseRing(E);
    xy := TateNormalForm_xy(E,d*(E ! [0,0]));
    dP := Places(X1N(Fq) ! xy);
    assert #dP eq 1;
    return dP[1];
end function;

function diamond_operator_X1N_noncuspidal(D,p);
  P,e := Support(D);
  return &+[e[i]*diamond_operator_X1N_noncuspidal_place(P[i],p) : i in [1..#P]]; 
end function;


function Tp_pdp_1_noncuspidal_place(P,p);
    return Tp_X1N_noncuspidal_place(P,p)-p*diamond_operator_X1N_noncuspidal_place(P,p)-P;
end function;

function Tp_pdp_1_noncuspidal(D,p);
  P,e := Support(D);
  if #P eq 0 then;
    return D;
  end if;
  return &+[e[i]*Tp_pdp_1_noncuspidal_place(P[i],p) : i in [1..#P]]; 
end function;


function PositiveRankHeckePolynomial(S,n);
//Returns the characteristic polynomial of the hecke operator n on the subspace
//of the cuspidal modular symbol spaces S corresponding to the part where the LRatio is 0
//Under BSD this is exactly the part corresponding to the part of S where the corresponding abelian variety has positive rank
 return &*[HeckePolynomial(Si,n) : Si in NewformDecomposition(S) | LRatio(AssociatedNewSpace(Si),1) eq 0];
end function;



function PositiveRankHeckePolynomialX1N(N,n,chars);
//The input space needs to be cuspidal of sign 0
//Returns the characteristic polynomial of the hecke operator n on the subspace
//of the cuspidal modular symbol spaces S corresponding to the part where the LRatio is 0
//with respect to at least one of the characters in chars
//Under BSD this is exactly the part corresponding to the part of S where the corresponding abelian variety when twisted by one of the characters has positive rank

  D := FullDirichletGroup(N);
  chars := [D ! chi : chi in chars];
  ann_pol := 1;
  for d in Elements(D) do;
    M := ModularSymbols(d,2,0);
    S := CuspidalSubspace(M);
    for Si in NewformDecomposition(S) do;
      Snew := AssociatedNewSpace(Si);
      rank_0 := &or[Dimension(Snew)/2 ne Dimension(TwistedWindingSubmodule(Snew,1,chi)) : chi in chars];
      if rank_0 then;
        ann_pol := ann_pol*Sqrt(HeckePolynomial(Si,n));
      end if;
    end for;
  end for;
  return ann_pol;
end function;




    
The diff you're trying to view is too large. Only the first 1000 changed files have been loaded.
Showing with 0 additions and 0 deletions (0 / 0 diffs computed)
swh spinner

Computing file changes ...

Software Heritage — Copyright (C) 2015–2025, The Software Heritage developers. License: GNU AGPLv3+.
The source code of Software Heritage itself is available on our development forge.
The source code files archived by Software Heritage are available under their own copyright and licenses.
Terms of use: Archive access, API— Contact— JavaScript license information— Web API

back to top