Skip to main content
  • Home
  • Development
  • Documentation
  • Donate
  • Operational login
  • Browse the archive

swh logo
SoftwareHeritage
Software
Heritage
Archive
Features
  • Search

  • Downloads

  • Save code now

  • Add forge now

  • Help

Revision 55c8dd22cdc0d897bab1c926508d60f52b7d0420 authored by Eh Tan on 23 June 2007, 00:28:23 UTC, committed by Eh Tan on 23 June 2007, 00:28:23 UTC
Removed the back-and-forth interpolation of viscosity, which smoothes the viscosity field unnecessarily
1 parent ed4ce7b
  • Files
  • Changes
  • 59f640c
  • /
  • lib
  • /
  • Regional_version_dependent.c
Raw File Download
Permalinks

To reference or cite the objects present in the Software Heritage archive, permalinks based on SoftWare Hash IDentifiers (SWHIDs) must be used.
Select below a type of object currently browsed in order to display its associated SWHID and permalink.

  • revision
  • directory
  • content
revision badge
swh:1:rev:55c8dd22cdc0d897bab1c926508d60f52b7d0420
directory badge Iframe embedding
swh:1:dir:a874da654db1d10b5a4598778d7db534570e2b7c
content badge Iframe embedding
swh:1:cnt:b8ba97fa641a8323773a920cb936c0d2609e3c17
Citations

This interface enables to generate software citations, provided that the root directory of browsed objects contains a citation.cff or codemeta.json file.
Select below a type of object currently browsed in order to generate citations for them.

  • revision
  • directory
  • content
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Regional_version_dependent.c
/*
 *~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
 *
 *<LicenseText>
 *
 * CitcomS by Louis Moresi, Shijie Zhong, Lijie Han, Eh Tan,
 * Clint Conrad, Michael Gurnis, and Eun-seo Choi.
 * Copyright (C) 1994-2005, California Institute of Technology.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 *
 *</LicenseText>
 *
 *~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
 */
#include <math.h>

#include "global_defs.h"
#include "parallel_related.h"

/* Setup global mesh parameters */
void regional_global_derived_values(E)
     struct All_variables *E;

{
    int d,i,nox,noz,noy;
    void parallel_process_termination();


   E->mesh.levmax = E->mesh.levels-1;
   nox = (E->mesh.mgunitx * (int) pow(2.0,((double)E->mesh.levmax)))*E->parallel.nprocx + 1;
   noy = (E->mesh.mgunity * (int) pow(2.0,((double)E->mesh.levmax)))*E->parallel.nprocy + 1;

   if (E->control.NMULTIGRID||E->control.EMULTIGRID)  {
      E->mesh.levmax = E->mesh.levels-1;
      E->mesh.gridmax = E->mesh.levmax;
      E->mesh.nox = (E->mesh.mgunitx * (int) pow(2.0,((double)E->mesh.levmax)))*E->parallel.nprocx + 1;
      E->mesh.noy = (E->mesh.mgunity * (int) pow(2.0,((double)E->mesh.levmax)))*E->parallel.nprocy + 1;
      E->mesh.noz = (E->mesh.mgunitz * (int) pow(2.0,((double)E->mesh.levmax)))*E->parallel.nprocz + 1;
      }
   else   {
      if (nox!=E->mesh.nox || noy!=E->mesh.noy) {
         if (E->parallel.me==0)
            fprintf(stderr,"inconsistent mesh for interpolation, quit the run\n");
         parallel_process_termination();
         }
      E->mesh.gridmax = E->mesh.levmax;
      E->mesh.gridmin = E->mesh.levmax;
     }

   if(E->mesh.nsd != 3)
      E->mesh.noy = 1;

   E->mesh.nnx[1] = E->mesh.nox;
   E->mesh.nnx[2] = E->mesh.noy;
   E->mesh.nnx[3] = E->mesh.noz;
   E->mesh.elx = E->mesh.nox-1;
   E->mesh.ely = E->mesh.noy-1;
   E->mesh.elz = E->mesh.noz-1;

   E->mesh.nno = E->sphere.caps;
   for(d=1;d<=E->mesh.nsd;d++)
      E->mesh.nno *= E->mesh.nnx[d];

/*
   E->mesh.nel = E->sphere.caps*E->mesh.elx*E->mesh.elz*E->mesh.ely;
*/
   E->mesh.nel = E->mesh.elx*E->mesh.elz*E->mesh.ely;

   E->mesh.nnov = E->mesh.nno;

   E->mesh.neq = E->mesh.nnov*E->mesh.nsd;

   E->mesh.npno = E->mesh.nel;
   E->mesh.nsf = E->mesh.nox*E->mesh.noy;

   for(i=E->mesh.levmax;i>=E->mesh.levmin;i--) {
      if (E->control.NMULTIGRID||E->control.EMULTIGRID)
	{ nox = (E->mesh.mgunitx * (int) pow(2.0,(double)i))*E->parallel.nprocx + 1;
	  noy = (E->mesh.mgunity * (int) pow(2.0,(double)i))*E->parallel.nprocy + 1;
	  noz = (E->mesh.mgunitz * (int) pow(2.0,(double)i))*E->parallel.nprocz + 1;
	}
      else
	{ noz = E->mesh.noz;
	  nox = (E->mesh.mgunitx * (int) pow(2.0,(double)i))*E->parallel.nprocx + 1;
	  noy = (E->mesh.mgunity * (int) pow(2.0,(double)i))*E->parallel.nprocy + 1;
          if (i<E->mesh.levmax) noz=2;
	}

      E->mesh.ELX[i] = nox-1;
      E->mesh.ELY[i] = noy-1;
      E->mesh.ELZ[i] = noz-1;
      E->mesh.NNO[i] = nox * noz * noy;
      E->mesh.NEL[i] = (nox-1) * (noz-1) * (noy-1);
      E->mesh.NPNO[i] = E->mesh.NEL[i] ;
      E->mesh.NOX[i] = nox;
      E->mesh.NOZ[i] = noz;
      E->mesh.NOY[i] = noy;

      E->mesh.NNOV[i] = E->mesh.NNO[i];
      E->mesh.NEQ[i] = E->mesh.nsd * E->mesh.NNOV[i] ;

      }

/* Scaling from dimensionless units to Millions of years for input velocity
   and time, timdir is the direction of time for advection. CPC 6/25/00 */

    /* Myr */
    E->data.scalet = (E->data.radius_km*1e3*E->data.radius_km*1e3/E->data.therm_diff)/(1.e6*365.25*24*3600);
    /* cm/yr */
    E->data.scalev = (E->data.radius_km*1e3/E->data.therm_diff)/(100*365.25*24*3600);
    E->data.timedir = E->control.Atemp / fabs(E->control.Atemp);


    if(E->control.print_convergence && E->parallel.me==0)
	fprintf(stderr,"Problem has %d x %d x %d nodes\n",E->mesh.nox,E->mesh.noz,E->mesh.noy);

   return;
}



/* =================================================
   Standard node positions including mesh refinement

   =================================================  */

void regional_node_locations(E)
  struct All_variables *E;
{
  int i,j,k,lev;
  double ro,dr,*rr,*RR,fo;
  float tt1;
  int nox,noy,noz,step;
  int nn;
  char output_file[255];
  char a[100];
  FILE *fp1;

  void regional_coord_of_cap();
  void rotate_mesh ();
  void compute_angle_surf_area ();
  void parallel_process_termination();

  rr = (double *)  malloc((E->mesh.noz+1)*sizeof(double));
  RR = (double *)  malloc((E->mesh.noz+1)*sizeof(double));
  nox=E->mesh.nox;
  noy=E->mesh.noy;
  noz=E->mesh.noz;


  if(E->control.coor==1)    {
      sprintf(output_file,"%s",E->control.coor_file);
      fp1=fopen(output_file,"r");
	if (fp1 == NULL) {
          fprintf(E->fp,"(Nodal_mesh.c #1) Cannot open %s\n",output_file);
          exit(8);
	}

      fscanf(fp1,"%s %d",a,&i);
      for(i=1;i<=nox;i++)
      fscanf(fp1,"%d %f",&nn,&tt1);

      fscanf(fp1,"%s %d",a,&i);
      for(i=1;i<=noy;i++)
      fscanf(fp1,"%d %f",&nn,&tt1);

      fscanf(fp1,"%s %d",a,&i);
      for (k=1;k<=E->mesh.noz;k++)  {
      fscanf(fp1,"%d %f",&nn,&tt1);
      rr[k]=tt1;
      }
      E->sphere.ri = rr[1];
      E->sphere.ro = rr[E->mesh.noz];

      fclose(fp1);

   }

    else {
      dr = (E->sphere.ro-E->sphere.ri)/(E->mesh.noz-1);
      for (k=1;k<=E->mesh.noz;k++)  {
      rr[k] = E->sphere.ri + (k-1)*dr;
      }

    }



  for (i=1;i<=E->lmesh.noz;i++)  {
      k = E->lmesh.nzs+i-1;
      RR[i] = rr[k];
      }

  for (lev=E->mesh.levmin;lev<=E->mesh.levmax;lev++) {

    if (E->control.NMULTIGRID||E->control.EMULTIGRID)
        step = (int) pow(2.0,(double)(E->mesh.levmax-lev));
    else
        step = 1;

      for (i=1;i<=E->lmesh.NOZ[lev];i++)
         E->sphere.R[lev][i] = RR[(i-1)*step+1];

    }          /* lev   */


/*    do not need to rotate for the mesh grid for one regional problem   */


  ro = -0.5*(M_PI/4.0)/E->lmesh.elx;
  fo = 0.0;

  E->sphere.dircos[1][1] = cos(ro)*cos(fo);
  E->sphere.dircos[1][2] = cos(ro)*sin(fo);
  E->sphere.dircos[1][3] = -sin(ro);
  E->sphere.dircos[2][1] = -sin(fo);
  E->sphere.dircos[2][2] = cos(fo);
  E->sphere.dircos[2][3] = 0.0;
  E->sphere.dircos[3][1] = sin(ro)*cos(fo);
  E->sphere.dircos[3][2] = sin(ro)*sin(fo);
  E->sphere.dircos[3][3] = cos(ro);

  for (j=1;j<=E->sphere.caps_per_proc;j++)   {
     regional_coord_of_cap(E,j,0);
     }


  if (E->control.verbose) {
  for (lev=E->mesh.levmin;lev<=E->mesh.levmax;lev++) {
    fprintf(E->fp_out,"output_coordinates before rotation %d \n",lev);
    for (j=1;j<=E->sphere.caps_per_proc;j++)  {
      fprintf(E->fp_out,"output_coordinates for cap %d %d\n",j,E->lmesh.NNO[lev]);
      for (i=1;i<=E->lmesh.NNO[lev];i++)
        if(i%E->lmesh.NOZ[lev]==1)
             fprintf(E->fp_out,"%d %d %g %g %g\n",j,i,E->SX[lev][j][1][i],E->SX[lev][j][2][i],E->SX[lev][j][3][i]);
      }
    }
    fflush(E->fp_out);
  }
                   /* rotate the mesh to avoid two poles on mesh points */
/*
  for (j=1;j<=E->sphere.caps_per_proc;j++)   {
     rotate_mesh(E,j,0);
     }
*/

  compute_angle_surf_area (E);   /* used for interpolation */


  for (lev=E->mesh.levmin;lev<=E->mesh.levmax;lev++)
    for (j=1;j<=E->sphere.caps_per_proc;j++)
      for (i=1;i<=E->lmesh.NNO[lev];i++)  {
        E->SinCos[lev][j][0][i] = sin(E->SX[lev][j][1][i]);
        E->SinCos[lev][j][1][i] = sin(E->SX[lev][j][2][i]);
        E->SinCos[lev][j][2][i] = cos(E->SX[lev][j][1][i]);
        E->SinCos[lev][j][3][i] = cos(E->SX[lev][j][2][i]);
        }

/*
  if (E->parallel.me_loc[3]==E->parallel.nprocz-1)  {
    sprintf(output_file,"coord.%d",E->parallel.me);
    fp=fopen(output_file,"w");
	if (fp == NULL) {
          fprintf(E->fp,"(Nodal_mesh.c #2) Cannot open %s\n",output_file);
          exit(8);
	}
    for(m=1;m<=E->sphere.caps_per_proc;m++)  {
      for(i=1;i<=E->lmesh.noy;i++) {
        for(j=1;j<=E->lmesh.nox;j++)  {
           node=1+(j-1)*E->lmesh.noz+(i-1)*E->lmesh.nox*E->lmesh.noz;
           t1 = 90.0-E->sx[m][1][node]/M_PI*180.0;
           f1 = E->sx[m][2][node]/M_PI*180.0;
           fprintf(fp,"%f %f\n",t1,f1);
           }
        fprintf(fp,">\n");
        }
      for(j=1;j<=E->lmesh.nox;j++)  {
        for(i=1;i<=E->lmesh.noy;i++) {
           node=1+(j-1)*E->lmesh.noz+(i-1)*E->lmesh.nox*E->lmesh.noz;
           t1 = 90.0-E->sx[m][1][node]/M_PI*180.0;
           f1 = E->sx[m][2][node]/M_PI*180.0;
           fprintf(fp,"%f %f\n",t1,f1);
           }
        fprintf(fp,">\n");
        }
      }
     fclose(fp);
     }
*/


  if (E->control.verbose) {
  for (lev=E->mesh.levmin;lev<=E->mesh.levmax;lev++)   {
    fprintf(E->fp_out,"output_coordinates after rotation %d \n",lev);
    for (j=1;j<=E->sphere.caps_per_proc;j++)
      for (i=1;i<=E->lmesh.NNO[lev];i++)
        if(i%E->lmesh.NOZ[lev]==1)
             fprintf(E->fp_out,"%d %d %g %g %g\n",j,i,E->SX[lev][j][1][i],E->SX[lev][j][2][i],E->SX[lev][j][3][i]);
      }
    fflush(E->fp_out);
  }
   free((void *)rr);
   free((void *)RR);

   return;
}



void regional_construct_tic_from_input(struct All_variables *E)
{
  double modified_plgndr_a(int, int, double);
  void temperatures_conform_bcs();

  int i, j ,k , kk, m, p, node, nodet;
  int nox, noy, noz, gnoz;
  double r1, f1, t1;
  int mm, ll;
  double con, temp;

  double tlen = M_PI / (E->control.theta_max - E->control.theta_min);
  double flen = M_PI / (E->control.fi_max - E->control.fi_min);

  noy=E->lmesh.noy;
  nox=E->lmesh.nox;
  noz=E->lmesh.noz;
  gnoz=E->mesh.noz;

  if (E->convection.tic_method == 0) {


    /* set up a linear temperature profile first */
    for(m=1;m<=E->sphere.caps_per_proc;m++)
      for(i=1;i<=noy;i++)
	for(j=1;j<=nox;j++)
	  for(k=1;k<=noz;k++) {
	    node=k+(j-1)*noz+(i-1)*nox*noz;
	    r1=E->sx[m][3][node];
	    E->T[m][node] = E->control.TBCbotval - (E->control.TBCtopval + E->control.TBCbotval)*(r1 - E->sphere.ri)/(E->sphere.ro - E->sphere.ri);
	  }

    /* This part put a temperature anomaly at depth where the global
       node number is equal to load_depth. The horizontal pattern of
       the anomaly is given by spherical harmonic ll & mm. */

    for (p=0; p<E->convection.number_of_perturbations; p++) {
      mm = E->convection.perturb_mm[p];
      ll = E->convection.perturb_ll[p];
      con = E->convection.perturb_mag[p];
      kk = E->convection.load_depth[p];

      if ( (kk < 1) || (kk >= gnoz) ) continue;

      k = kk - E->lmesh.nzs + 1;
      if ( (k < 1) || (k >= noz) ) continue; /* if layer k is not inside this proc. */
      if (E->parallel.me_loc[1] == 0 && E->parallel.me_loc[2] == 0)

      for(m=1;m<=E->sphere.caps_per_proc;m++)
	for(i=1;i<=noy;i++)
	  for(j=1;j<=nox;j++) {
	    node=k+(j-1)*noz+(i-1)*nox*noz;
	    t1 = (E->sx[m][1][node] - E->control.theta_min) * tlen;
	    f1 = (E->sx[m][2][node] - E->control.fi_min) * flen;

	    E->T[m][node] += con*cos(ll*t1)*cos(mm*f1);

	    /*
	      t1=E->sx[m][1][node];
	      f1=E->sx[m][2][node];
	      E->T[m][node] += con*modified_plgndr_a(ll,mm,t1)*cos(mm*f1);
	    */
	  }
    }

  }
  else if (E->convection.tic_method == 1) {
      /* set up a top thermal boundary layer */
      for(m=1;m<=E->sphere.caps_per_proc;m++)
          for(i=1;i<=noy;i++)
              for(j=1;j<=nox;j++)
                  for(k=1;k<=noz;k++) {
                      node=k+(j-1)*noz+(i-1)*nox*noz;
                      r1=E->sx[m][3][node];
                      temp = 0.2*(E->sphere.ro-r1) * 0.5/sqrt(E->convection.half_space_age/E->data.scalet);
                      E->T[m][node] = E->control.TBCbotval*erf(temp);
                  }

  }
  else if (E->convection.tic_method == 2) {
    double temp;
    double theta_center = E->convection.blob_center[0];
    double fi_center = E->convection.blob_center[1];
    double r_center = E->convection.blob_center[2];
    double radius = E->convection.blob_radius;
    double amp = E->convection.blob_dT;
	double x_center,y_center,z_center;
	double theta,fi,r,x,y,z,distance;

	fprintf(stderr,"center=%e %e %e radius=%e dT=%e\n",theta_center,fi_center,r_center,radius,amp);
	/* set up a thermal boundary layer first */
    for(m=1;m<=E->sphere.caps_per_proc;m++)
      for(i=1;i<=noy;i++)
        for(j=1;j<=nox;j++)
          for(k=1;k<=noz;k++) {
            node=k+(j-1)*noz+(i-1)*nox*noz;
            r1=E->sx[m][3][node];
            temp = 0.2*(E->sphere.ro-r1) * 0.5/sqrt(E->convection.half_space_age/E->data.scalet);
            E->T[m][node] = E->control.TBCbotval*erf(temp);
          }

    x_center = r_center * sin(fi_center) * cos(theta_center);
    y_center = r_center * sin(fi_center) * sin(theta_center);
    z_center = r_center * cos(fi_center);

    /* compute temperature field according to nodal coordinate */
    for(m=1;m<=E->sphere.caps_per_proc;m++)
        for(k=1;k<=E->lmesh.noy;k++)
            for(j=1;j<=E->lmesh.nox;j++)
                for(i=1;i<=E->lmesh.noz;i++)  {
                    node = i + (j-1)*E->lmesh.noz
                             + (k-1)*E->lmesh.noz*E->lmesh.nox;

                    theta = E->sx[m][1][node];
                    fi = E->sx[m][2][node];
                    r = E->sx[m][3][node];

                    distance = sqrt((theta - theta_center)*(theta - theta_center) +
                                    (fi - fi_center)*(fi - fi_center) +
                                    (r - r_center)*(r - r_center));

                    if (distance < radius)
                      E->T[m][node] += amp * exp(-1.0*distance/radius);
                }
  }
  else if (E->convection.tic_method == 3) {
    /* set up a linear temperature profile first */
    for(m=1;m<=E->sphere.caps_per_proc;m++)
      for(i=1;i<=noy;i++)
	for(j=1;j<=nox;j++)
	  for(k=1;k<=noz;k++) {
	    node=k+(j-1)*noz+(i-1)*nox*noz;
	    r1=E->sx[m][3][node];
	    E->T[m][node] = E->control.TBCbotval - (E->control.TBCtopval + E->control.TBCbotval)*(r1 - E->sphere.ri)/(E->sphere.ro - E->sphere.ri);
	  }

    /* This part put a temperature anomaly for whole mantle. The horizontal
       pattern of the anomaly is given by spherical harmonic ll & mm. */

    for (p=0; p<E->convection.number_of_perturbations; p++) {
      mm = E->convection.perturb_mm[p];
      ll = E->convection.perturb_ll[p];
      con = E->convection.perturb_mag[p];
      kk = E->convection.load_depth[p];

      if ( (kk < 1) || (kk >= gnoz) ) continue;

      if (E->parallel.me == 0)
	fprintf(stderr,"Initial temperature perturbation:  layer=%d  mag=%g  l=%d  m=%d\n", kk, con, ll, mm);

      for(m=1;m<=E->sphere.caps_per_proc;m++)
	for(i=1;i<=noy;i++)
	  for(j=1;j<=nox;j++)
            for(k=1;k<=noz;k++) {
	      node=k+(j-1)*noz+(i-1)*nox*noz;
	      t1=E->sx[m][1][node];
	      f1=E->sx[m][2][node];
	      r1=E->sx[m][3][node];
              E->T[m][node] += con*(cos(mm*f1)+sin(mm*f1))
                  *sin(M_PI*(r1-E->sphere.ri)/(E->sphere.ro-E->sphere.ri));
	  }
    }
  }

  temperatures_conform_bcs(E);

  return;
}


/* setup boundary node and element arrays for bookkeeping */

void regional_construct_boundary( struct All_variables *E)
{
  const int dims=E->mesh.nsd;

  int m, i, j, k, d, el, count;
  int isBoundary;
  int normalFlag[4];

  /* boundary = all - interior */
  int max_size = E->lmesh.elx*E->lmesh.ely*E->lmesh.elz
    - (E->lmesh.elx-2)*(E->lmesh.ely-2)*(E->lmesh.elz-2) + 1;

  for(m=1;m<=E->sphere.caps_per_proc;m++) {
    E->boundary.element[m] = (int *)malloc(max_size*sizeof(int));

    for(d=1; d<=dims; d++)
      E->boundary.normal[m][d] = (int *)malloc(max_size*sizeof(int));

  }

  for(m=1;m<=E->sphere.caps_per_proc;m++) {
    count = 1;
    for(k=1; k<=E->lmesh.ely; k++)
      for(j=1; j<=E->lmesh.elx; j++)
	for(i=1; i<=E->lmesh.elz; i++) {

	  isBoundary = 0;
	  for(d=1; d<=dims; d++)
	    normalFlag[d] = 0;

	  if((E->parallel.me_loc[1] == 0) && (j == 1)) {
	    isBoundary = 1;
	    normalFlag[1] = -1;
	  }

	  if((E->parallel.me_loc[1] == E->parallel.nprocx - 1)
	     && (j == E->lmesh.elx)) {
	    isBoundary = 1;
	    normalFlag[1] = 1;
	  }

	  if((E->parallel.me_loc[2] == 0) && (k == 1)) {
	    isBoundary = 1;
	    normalFlag[2] = -1;
	  }

	  if((E->parallel.me_loc[2] == E->parallel.nprocy - 1)
	     && (k == E->lmesh.ely)) {
	    isBoundary = 1;
	    normalFlag[2] = 1;
	  }

	  if((E->parallel.me_loc[3] == 0) && (i == 1)) {
	    isBoundary = 1;
	    normalFlag[3] = -1;
	  }

	  if((E->parallel.me_loc[3] == E->parallel.nprocz - 1)
	     && (i == E->lmesh.elz)) {
	    isBoundary = 1;
	    normalFlag[3] = 1;
	  }

	  if(isBoundary) {
	    el = i + (j-1)*E->lmesh.elz + (k-1)*E->lmesh.elz*E->lmesh.elx;
	    E->boundary.element[m][count] = el;
	    for(d=1; d<=dims; d++)
	      E->boundary.normal[m][d][count] = normalFlag[d];

	    ++count;
	  }

	} /* end for i, j, k */

    E->boundary.nel = count - 1;
  } /* end for m */
}
The diff you're trying to view is too large. Only the first 1000 changed files have been loaded.
Showing with 0 additions and 0 deletions (0 / 0 diffs computed)
swh spinner

Computing file changes ...

back to top

Software Heritage — Copyright (C) 2015–2025, The Software Heritage developers. License: GNU AGPLv3+.
The source code of Software Heritage itself is available on our development forge.
The source code files archived by Software Heritage are available under their own copyright and licenses.
Terms of use: Archive access, API— Contact— JavaScript license information— Web API