Revision 58c72f94efb7d2f8dc918eaf43e7bbb20480fdb9 authored by Linus Torvalds on 20 June 2014, 03:53:20 UTC, committed by Linus Torvalds on 20 June 2014, 03:53:20 UTC
Pull ARM SoC fixes from Arnd Bergmann:
 "A first set of bug fixes that didn't make it for the merge window, and
  two Kconfig cleanups that still make sense at this point.

  Unfortunately, one of the two cleanups caused an unintended change in
  the original version, so we had to revert one part of it and do some
  more testing to ensure the rest is really fine.  There was also a
  last-minute rebase of the patches to remove another bad commit"

* tag 'fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/arm/arm-soc:
  ARM: use menuconfig for sub-arch menus
  ARM: multi_v7_defconfig: re-enable SDHCI drivers
  ARM: EXYNOS: Fix compilation warning
  ARM: exynos: move sysram info to exynos.c
  ARM: dts: Specify the NAND ECC scheme explicitly on Armada 385 DB board
  ARM: dts: Specify the NAND ECC scheme explicitly on Armada 375 DB board
  ARM: exynos: cleanup kconfig option display
  misc: vexpress: fix error handling vexpress_syscfg_regmap_init()
  ARM: Remove ARCH_HAS_CPUFREQ config option
  ARM: integrator: fix section mismatch problem
  ARM: mvebu: DT: fix OpenBlocks AX3-4 RAM size
  ARM: samsung: make SAMSUNG_DMADEV optional
  remoteproc: da8xx: don't select CMA on no-MMU
  bus/arm-cci: add dependency on OF && CPU_V7
  ARM: keystone requires ARM_PATCH_PHYS_VIRT
  ARM: omap2: fix am43xx dependency on l2x0 cache
2 parent s 894e552 + 21278ae
Raw File
calibrate.c
/* calibrate.c: default delay calibration
 *
 * Excised from init/main.c
 *  Copyright (C) 1991, 1992  Linus Torvalds
 */

#include <linux/jiffies.h>
#include <linux/delay.h>
#include <linux/init.h>
#include <linux/timex.h>
#include <linux/smp.h>
#include <linux/percpu.h>

unsigned long lpj_fine;
unsigned long preset_lpj;
static int __init lpj_setup(char *str)
{
	preset_lpj = simple_strtoul(str,NULL,0);
	return 1;
}

__setup("lpj=", lpj_setup);

#ifdef ARCH_HAS_READ_CURRENT_TIMER

/* This routine uses the read_current_timer() routine and gets the
 * loops per jiffy directly, instead of guessing it using delay().
 * Also, this code tries to handle non-maskable asynchronous events
 * (like SMIs)
 */
#define DELAY_CALIBRATION_TICKS			((HZ < 100) ? 1 : (HZ/100))
#define MAX_DIRECT_CALIBRATION_RETRIES		5

static unsigned long calibrate_delay_direct(void)
{
	unsigned long pre_start, start, post_start;
	unsigned long pre_end, end, post_end;
	unsigned long start_jiffies;
	unsigned long timer_rate_min, timer_rate_max;
	unsigned long good_timer_sum = 0;
	unsigned long good_timer_count = 0;
	unsigned long measured_times[MAX_DIRECT_CALIBRATION_RETRIES];
	int max = -1; /* index of measured_times with max/min values or not set */
	int min = -1;
	int i;

	if (read_current_timer(&pre_start) < 0 )
		return 0;

	/*
	 * A simple loop like
	 *	while ( jiffies < start_jiffies+1)
	 *		start = read_current_timer();
	 * will not do. As we don't really know whether jiffy switch
	 * happened first or timer_value was read first. And some asynchronous
	 * event can happen between these two events introducing errors in lpj.
	 *
	 * So, we do
	 * 1. pre_start <- When we are sure that jiffy switch hasn't happened
	 * 2. check jiffy switch
	 * 3. start <- timer value before or after jiffy switch
	 * 4. post_start <- When we are sure that jiffy switch has happened
	 *
	 * Note, we don't know anything about order of 2 and 3.
	 * Now, by looking at post_start and pre_start difference, we can
	 * check whether any asynchronous event happened or not
	 */

	for (i = 0; i < MAX_DIRECT_CALIBRATION_RETRIES; i++) {
		pre_start = 0;
		read_current_timer(&start);
		start_jiffies = jiffies;
		while (time_before_eq(jiffies, start_jiffies + 1)) {
			pre_start = start;
			read_current_timer(&start);
		}
		read_current_timer(&post_start);

		pre_end = 0;
		end = post_start;
		while (time_before_eq(jiffies, start_jiffies + 1 +
					       DELAY_CALIBRATION_TICKS)) {
			pre_end = end;
			read_current_timer(&end);
		}
		read_current_timer(&post_end);

		timer_rate_max = (post_end - pre_start) /
					DELAY_CALIBRATION_TICKS;
		timer_rate_min = (pre_end - post_start) /
					DELAY_CALIBRATION_TICKS;

		/*
		 * If the upper limit and lower limit of the timer_rate is
		 * >= 12.5% apart, redo calibration.
		 */
		if (start >= post_end)
			printk(KERN_NOTICE "calibrate_delay_direct() ignoring "
					"timer_rate as we had a TSC wrap around"
					" start=%lu >=post_end=%lu\n",
				start, post_end);
		if (start < post_end && pre_start != 0 && pre_end != 0 &&
		    (timer_rate_max - timer_rate_min) < (timer_rate_max >> 3)) {
			good_timer_count++;
			good_timer_sum += timer_rate_max;
			measured_times[i] = timer_rate_max;
			if (max < 0 || timer_rate_max > measured_times[max])
				max = i;
			if (min < 0 || timer_rate_max < measured_times[min])
				min = i;
		} else
			measured_times[i] = 0;

	}

	/*
	 * Find the maximum & minimum - if they differ too much throw out the
	 * one with the largest difference from the mean and try again...
	 */
	while (good_timer_count > 1) {
		unsigned long estimate;
		unsigned long maxdiff;

		/* compute the estimate */
		estimate = (good_timer_sum/good_timer_count);
		maxdiff = estimate >> 3;

		/* if range is within 12% let's take it */
		if ((measured_times[max] - measured_times[min]) < maxdiff)
			return estimate;

		/* ok - drop the worse value and try again... */
		good_timer_sum = 0;
		good_timer_count = 0;
		if ((measured_times[max] - estimate) <
				(estimate - measured_times[min])) {
			printk(KERN_NOTICE "calibrate_delay_direct() dropping "
					"min bogoMips estimate %d = %lu\n",
				min, measured_times[min]);
			measured_times[min] = 0;
			min = max;
		} else {
			printk(KERN_NOTICE "calibrate_delay_direct() dropping "
					"max bogoMips estimate %d = %lu\n",
				max, measured_times[max]);
			measured_times[max] = 0;
			max = min;
		}

		for (i = 0; i < MAX_DIRECT_CALIBRATION_RETRIES; i++) {
			if (measured_times[i] == 0)
				continue;
			good_timer_count++;
			good_timer_sum += measured_times[i];
			if (measured_times[i] < measured_times[min])
				min = i;
			if (measured_times[i] > measured_times[max])
				max = i;
		}

	}

	printk(KERN_NOTICE "calibrate_delay_direct() failed to get a good "
	       "estimate for loops_per_jiffy.\nProbably due to long platform "
		"interrupts. Consider using \"lpj=\" boot option.\n");
	return 0;
}
#else
static unsigned long calibrate_delay_direct(void)
{
	return 0;
}
#endif

/*
 * This is the number of bits of precision for the loops_per_jiffy.  Each
 * time we refine our estimate after the first takes 1.5/HZ seconds, so try
 * to start with a good estimate.
 * For the boot cpu we can skip the delay calibration and assign it a value
 * calculated based on the timer frequency.
 * For the rest of the CPUs we cannot assume that the timer frequency is same as
 * the cpu frequency, hence do the calibration for those.
 */
#define LPS_PREC 8

static unsigned long calibrate_delay_converge(void)
{
	/* First stage - slowly accelerate to find initial bounds */
	unsigned long lpj, lpj_base, ticks, loopadd, loopadd_base, chop_limit;
	int trials = 0, band = 0, trial_in_band = 0;

	lpj = (1<<12);

	/* wait for "start of" clock tick */
	ticks = jiffies;
	while (ticks == jiffies)
		; /* nothing */
	/* Go .. */
	ticks = jiffies;
	do {
		if (++trial_in_band == (1<<band)) {
			++band;
			trial_in_band = 0;
		}
		__delay(lpj * band);
		trials += band;
	} while (ticks == jiffies);
	/*
	 * We overshot, so retreat to a clear underestimate. Then estimate
	 * the largest likely undershoot. This defines our chop bounds.
	 */
	trials -= band;
	loopadd_base = lpj * band;
	lpj_base = lpj * trials;

recalibrate:
	lpj = lpj_base;
	loopadd = loopadd_base;

	/*
	 * Do a binary approximation to get lpj set to
	 * equal one clock (up to LPS_PREC bits)
	 */
	chop_limit = lpj >> LPS_PREC;
	while (loopadd > chop_limit) {
		lpj += loopadd;
		ticks = jiffies;
		while (ticks == jiffies)
			; /* nothing */
		ticks = jiffies;
		__delay(lpj);
		if (jiffies != ticks)	/* longer than 1 tick */
			lpj -= loopadd;
		loopadd >>= 1;
	}
	/*
	 * If we incremented every single time possible, presume we've
	 * massively underestimated initially, and retry with a higher
	 * start, and larger range. (Only seen on x86_64, due to SMIs)
	 */
	if (lpj + loopadd * 2 == lpj_base + loopadd_base * 2) {
		lpj_base = lpj;
		loopadd_base <<= 2;
		goto recalibrate;
	}

	return lpj;
}

static DEFINE_PER_CPU(unsigned long, cpu_loops_per_jiffy) = { 0 };

/*
 * Check if cpu calibration delay is already known. For example,
 * some processors with multi-core sockets may have all cores
 * with the same calibration delay.
 *
 * Architectures should override this function if a faster calibration
 * method is available.
 */
unsigned long __attribute__((weak)) calibrate_delay_is_known(void)
{
	return 0;
}

void calibrate_delay(void)
{
	unsigned long lpj;
	static bool printed;
	int this_cpu = smp_processor_id();

	if (per_cpu(cpu_loops_per_jiffy, this_cpu)) {
		lpj = per_cpu(cpu_loops_per_jiffy, this_cpu);
		if (!printed)
			pr_info("Calibrating delay loop (skipped) "
				"already calibrated this CPU");
	} else if (preset_lpj) {
		lpj = preset_lpj;
		if (!printed)
			pr_info("Calibrating delay loop (skipped) "
				"preset value.. ");
	} else if ((!printed) && lpj_fine) {
		lpj = lpj_fine;
		pr_info("Calibrating delay loop (skipped), "
			"value calculated using timer frequency.. ");
	} else if ((lpj = calibrate_delay_is_known())) {
		;
	} else if ((lpj = calibrate_delay_direct()) != 0) {
		if (!printed)
			pr_info("Calibrating delay using timer "
				"specific routine.. ");
	} else {
		if (!printed)
			pr_info("Calibrating delay loop... ");
		lpj = calibrate_delay_converge();
	}
	per_cpu(cpu_loops_per_jiffy, this_cpu) = lpj;
	if (!printed)
		pr_cont("%lu.%02lu BogoMIPS (lpj=%lu)\n",
			lpj/(500000/HZ),
			(lpj/(5000/HZ)) % 100, lpj);

	loops_per_jiffy = lpj;
	printed = true;
}
back to top